• Title/Summary/Keyword: 데이터 획득 시스템

Search Result 1,256, Processing Time 0.029 seconds

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

A Study on the Development of an Indoor Positioning Support System for Providing Landmark Information (랜드마크 정보 제공을 위한 실내위치측위 지원 시스템 구축에 관한 연구)

  • Ock-Woo NAM;Chang-Soo SHIN;Yun-Soo CHOI
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.130-144
    • /
    • 2023
  • Recently, various positioning technologies are being researched based on signal-based positioning and image-based positioning to obtain accurate indoor location information. Among these, various studies are being conducted on image positioning technology that determines the location of a mobile terminal using images acquired through cameras and sensor data collected as needed. For video-based positioning, a method of determining indoor location is used by matching mobile terminal photos with virtual landmark images, and for this purpose, it is necessary to build indoor spatial information about various landmarks such as billboards, vending machines, and ATM machines. In order to construct indoor spatial information on various landmarks, a panoramic image in the form of a road view and accurate 3D survey results were obtained through c 13 buildings of the Electronics and Telecommunications Research Institute(ETRI). When comparing the 3D total station final result and the terrestrial lidar panoramic image coordinates, the coordinates and distance performance were obtained within about 0.10m, confirming that accurate landmark construction for use in indoor positioning was possible. By utilizing these terrestrial lidar achievements to perform 3D landmark modeling necessary for image positioning, it was possible to more quickly model landmark information that could not be constructed only through 3D modeling using existing as-built drawings.

System Development for Measuring Group Engagement in the Art Center (공연장에서 다중 몰입도 측정을 위한 시스템 개발)

  • Ryu, Joon Mo;Choi, Il Young;Choi, Lee Kwon;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.45-58
    • /
    • 2014
  • The Korean Culture Contents spread out to Worldwide, because the Korean wave is sweeping in the world. The contents stand in the middle of the Korean wave that we are used it. Each country is ongoing to keep their Culture industry improve the national brand and High added value. Performing contents is important factor of arousal in the enterprise industry. To improve high arousal confidence of product and positive attitude by populace is one of important factor by advertiser. Culture contents is the same situation. If culture contents have trusted by everyone, they will give information their around to spread word-of-mouth. So, many researcher study to measure for person's arousal analysis by statistical survey, physiological response, body movement and facial expression. First, Statistical survey has a problem that it is not possible to measure each person's arousal real time and we cannot get good survey result after they watched contents. Second, physiological response should be checked with surround because experimenter sets sensors up their chair or space by each of them. Additionally it is difficult to handle provided amount of information with real time from their sensor. Third, body movement is easy to get their movement from camera but it difficult to set up experimental condition, to measure their body language and to get the meaning. Lastly, many researcher study facial expression. They measures facial expression, eye tracking and face posed. Most of previous studies about arousal and interest are mostly limited to reaction of just one person and they have problems with application multi audiences. They have a particular method, for example they need room light surround, but set limits only one person and special environment condition in the laboratory. Also, we need to measure arousal in the contents, but is difficult to define also it is not easy to collect reaction by audiences immediately. Many audience in the theater watch performance. We suggest the system to measure multi-audience's reaction with real-time during performance. We use difference image analysis method for multi-audience but it weaks a dark field. To overcome dark environment during recoding IR camera can get the photo from dark area. In addition we present Multi-Audience Engagement Index (MAEI) to calculate algorithm which sources from sound, audience' movement and eye tracking value. Algorithm calculates audience arousal from the mobile survey, sound value, audience' reaction and audience eye's tracking. It improves accuracy of Multi-Audience Engagement Index, we compare Multi-Audience Engagement Index with mobile survey. And then it send the result to reporting system and proposal an interested persons. Mobile surveys are easy, fast, and visitors' discomfort can be minimized. Also additional information can be provided mobile advantage. Mobile application to communicate with the database, real-time information on visitors' attitudes focused on the content stored. Database can provide different survey every time based on provided information. The example shown in the survey are as follows: Impressive scene, Satisfied, Touched, Interested, Didn't pay attention and so on. The suggested system is combine as 3 parts. The system consist of three parts, External Device, Server and Internal Device. External Device can record multi-Audience in the dark field with IR camera and sound signal. Also we use survey with mobile application and send the data to ERD Server DB. The Server part's contain contents' data, such as each scene's weights value, group audience weights index, camera control program, algorithm and calculate Multi-Audience Engagement Index. Internal Device presents Multi-Audience Engagement Index with Web UI, print and display field monitor. Our system is test-operated by the Mogencelab in the DMC display exhibition hall which is located in the Sangam Dong, Mapo Gu, Seoul. We have still gotten from visitor daily. If we find this system audience arousal factor with this will be very useful to create contents.

A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model (문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구)

  • Shim, Jae-Seung;Won, Ha-Ram;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2019
  • Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research. However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models. Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model. The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance. Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study's limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.

KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain (KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용)

  • Kim, Donggyu;Lee, Dongwook;Park, Jangwon;Oh, Sungwoo;Kwon, Sungjun;Lee, Inyong;Choi, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.191-206
    • /
    • 2022
  • Recently, it is a de-facto approach to utilize a pre-trained language model(PLM) to achieve the state-of-the-art performance for various natural language tasks(called downstream tasks) such as sentiment analysis and question answering. However, similar to any other machine learning method, PLM tends to depend on the data distribution seen during the training phase and shows worse performance on the unseen (Out-of-Distribution) domain. Due to the aforementioned reason, there have been many efforts to develop domain-specified PLM for various fields such as medical and legal industries. In this paper, we discuss the training of a finance domain-specified PLM for the Korean language and its applications. Our finance domain-specified PLM, KB-BERT, is trained on a carefully curated financial corpus that includes domain-specific documents such as financial reports. We provide extensive performance evaluation results on three natural language tasks, topic classification, sentiment analysis, and question answering. Compared to the state-of-the-art Korean PLM models such as KoELECTRA and KLUE-RoBERTa, KB-BERT shows comparable performance on general datasets based on common corpora like Wikipedia and news articles. Moreover, KB-BERT outperforms compared models on finance domain datasets that require finance-specific knowledge to solve given problems.

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.

Reproducibility Evaluation of Deep inspiration breath-hold(DIBH) technique by respiration data and heart position analysis during radiation therapy for Left Breast cancer patients (좌측 유방암 환자의 방사선치료 중 환자의 호흡과 심장 위치 분석을 통한 Deep inspiration breath-hold(DIBH) 기법의 재현성 평가)

  • Jo, Jae Young;Bae, Sun Myung;Yoon, In Ha;Lee, Ho Yeon;Kang, Tae Young;Baek, Geum Mun;Bae, Jae Beom
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.297-303
    • /
    • 2014
  • Purpose : The purpose of this study is reproducibility evaluation of deep inspiration breath-hold(DIBH) technique by respiration data and heart position analysis in radiation therapy for Left Breast cancer patients. Materials and Methods : Free breathing(FB) Computed Tomography(CT) images and DIBH CT images of three left breast cancer patients were used to evaluate the heart volume and dose during treatment planing system( Eclipse version 10.0, Varian, USA ). The signal of RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, Varian, USA) was used to evaluate respiration stability of DIBH during breast radiation therapy. The images for measurement of heart position were acquired by the Electronic portal imaging device(EPID) cine acquisition mode. The distance of heart at the three measuring points(A, B, C) on each image was measured by Offline Review (ARIA 10, Varian, USA). Results : Significant differences were found between the FB and DIBH plans for mean heart dose (6.82 vs. 1.91 Gy), heart $V_{30}$ (68.57 vs. $8.26cm^3$), $V_{20}$ (76.43 vs. $11.34cm^3$). The standard deviation of DIBH signal of each patient was ${\pm}0.07cm$, ${\pm}0.04cm$, ${\pm}0.13cm$, respectively. The Maximum and Minimum heart distance on EPID images were measured as 0.32 cm and 0.00 cm. Conclusion : Consequently, using the DIBH technique with radiation therapy for left breast cancer patients is very useful to establish the treatment plan and to reduce the heart dose. In addition, it is beneficial to using the Cine acquisition mode of EPID for the reproducibility evaluation of DIBH.

Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques (소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스)

  • Cho, In-Dong;Kim, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.127-138
    • /
    • 2011
  • The core service of most research portal sites is providing relevant research papers to various researchers that match their research interests. This kind of service may only be effective and easy to use when a user can provide correct and concrete information about a paper such as the title, authors, and keywords. However, unfortunately, most users of this service are not acquainted with concrete bibliographic information. It implies that most users inevitably experience repeated trial and error attempts of keyword-based search. Especially, retrieving a relevant research paper is more difficult when a user is novice in the research domain and does not know appropriate keywords. In this case, a user should perform iterative searches as follows : i) perform an initial search with an arbitrary keyword, ii) acquire related keywords from the retrieved papers, and iii) perform another search again with the acquired keywords. This usage pattern implies that the level of service quality and user satisfaction of a portal site are strongly affected by the level of keyword management and searching mechanism. To overcome this kind of inefficiency, some leading research portal sites adopt the association rule mining-based keyword recommendation service that is similar to the product recommendation of online shopping malls. However, keyword recommendation only based on association analysis has limitation that it can show only a simple and direct relationship between two keywords. In other words, the association analysis itself is unable to present the complex relationships among many keywords in some adjacent research areas. To overcome this limitation, we propose the hybrid approach for establishing association network among keywords used in research papers. The keyword association network can be established by the following phases : i) a set of keywords specified in a certain paper are regarded as co-purchased items, ii) perform association analysis for the keywords and extract frequent patterns of keywords that satisfy predefined thresholds of confidence, support, and lift, and iii) schematize the frequent keyword patterns as a network to show the core keywords of each research area and connecting keywords among two or more research areas. To estimate the practical application of our approach, we performed a simple experiment with 600 keywords. The keywords are extracted from 131 research papers published in five prominent Korean journals in 2009. In the experiment, we used the SAS Enterprise Miner for association analysis and the R software for social network analysis. As the final outcome, we presented a network diagram and a cluster dendrogram for the keyword association network. We summarized the results in Section 4 of this paper. The main contribution of our proposed approach can be found in the following aspects : i) the keyword network can provide an initial roadmap of a research area to researchers who are novice in the domain, ii) a researcher can grasp the distribution of many keywords neighboring to a certain keyword, and iii) researchers can get some idea for converging different research areas by observing connecting keywords in the keyword association network. Further studies should include the following. First, the current version of our approach does not implement a standard meta-dictionary. For practical use, homonyms, synonyms, and multilingual problems should be resolved with a standard meta-dictionary. Additionally, more clear guidelines for clustering research areas and defining core and connecting keywords should be provided. Finally, intensive experiments not only on Korean research papers but also on international papers should be performed in further studies.

Performance Measurement of Siemens Inveon PET Scanner for Small Animal Imaging (소동물 영상을 위한 Siemens Inveon PET 스캐너의 성능평가)

  • Yu, A-Ram;Kim, Jin-Su;Kim, Kyeong-Min;Lee, Young-Sub;Kim, Jong-Guk;Woo, Sang-Keun;Park, Ji-Ae;Kim, Hee-Joung;Cheon, Gi-Jeong
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Inveon PET is a recently developed preclinical PET system for small animal. This study was conducted to measure the performance of Inveon PET as recommended by the NEMA NU 4-2008. We measured the spatial resolution, the sensitivity, the scatter fraction and the NECR using a F-18 source. A 3.432 ns coincidence window was used. A $1\;mm^3$ sized F-18 point source was used for the measurement of spatial resolution within an energy window of 350~625 keV. PET acquisition was performed to obtain the spatial resolution from the center to the 5 cm offset toward the edge of the transverse FOV. Sensitivity, scatter fraction, and NECR were measured within an energy window of 350~750 keV. For measuring the sensitivity, a F-18 line source (length: 12.7 cm) was used with concentric 5 aluminum tubes. For the acquisition of the scatter fraction and the NECR, two NEMA scatter phantoms (rat: 50 mm in diameter, 150 mm in length; mouse: 25 mm in diameter, 70 mm in length) were used and the data for 14 half-lives (25.6 hr) was obtained using the F-18 line source (rat: 316 MBq, mouse: 206 MBq). The spatial resolution of the F-18 point source was 1.53, 1.50 and 2.33 mm in the radial, tangential and axial directions, respectively. The volumetric resolution was $5.43\;mm^3$ in the center. The absolute sensitivity was 6.61%. The peak NECR was 486 kcps @121 MBq (rat phantom), and 1056 kcps @128 MBq (mouse phantom). The values of the scatter fraction were 20.59% and 7.93% in the rat and mouse phantoms, respectively. The performances of the Inveon animal PET scanner were measured in this study. This scanner will be useful for animal imaging.

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.