• Title/Summary/Keyword: 데이터 품질관리

Search Result 852, Processing Time 0.027 seconds

Proposal of Process Model for Research Data Quality Management (연구데이터 품질관리를 위한 프로세스 모델 제안)

  • Na-eun Han
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.1
    • /
    • pp.51-71
    • /
    • 2023
  • This study analyzed the government data quality management model, big data quality management model, and data lifecycle model for research data management, and analyzed the components common to each data quality management model. Those data quality management models are designed and proposed according to the lifecycle or based on the PDCA model according to the characteristics of target data, which is the object that performs quality management. And commonly, the components of planning, collection and construction, operation and utilization, and preservation and disposal are included. Based on this, the study proposed a process model for research data quality management, in particular, the research data quality management to be performed in a series of processes from collecting to servicing on a research data platform that provides services using research data as target data was discussed in the stages of planning, construction and operation, and utilization. This study has significance in providing knowledge based for research data quality management implementation methods.

Selection Criteria of Target Systems for Quality Management of National Defense Data (국방데이터 품질관리를 위한 대상 체계 선정 기준)

  • Jiseong Son;Yun-Young Hwang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.155-160
    • /
    • 2023
  • In principle, data from all databases and systems managed by the Ministry of Defense or public institutions must be guaranteed to have a certain level of quality or higher, but since most information systems are built and operated, data quality management for all systems is realistically limited. Most defense data is not disclosed due to the nature of the work, and many systems are strategically developed or integrated and managed by the military depending on the need and importance of the work. In addition, many types of data that require data quality management are being accumulated and generated, such as sensor data generated from weapon systems, unstructured data, and artificial intelligence learning data. However, there is no data quality management guide for defense data and a guide for selecting quality control targets, and the selection criteria are ambiguous to select databases and systems for quality control of defense data according to the standards of the public data quality management manual. Depends on the person in charge. Therefore, this paper proposes criteria for selecting a target system for quality control of defense data, and describes the relationship between the proposed selection criteria and the selection criteria in the existing manual.

공공데이터 품질환경 내 데이터 오류의 발생원인별 보안기술 대응방안에 관한 연구

  • LEE, Won Jae;Kim, Huy Kang
    • Review of KIISC
    • /
    • v.30 no.4
    • /
    • pp.77-89
    • /
    • 2020
  • 이 연구는 우리나라 정부의 공공데이터 공개 제도에 따른 공공데이터 품질관리체계를 이해하고, 공공기관이 신뢰성 있는 데이터를 위해 품질 점검을 시행하면서도 효과적인 관리를 하기 위한 방안에 관한 것이다. 공공데이터법과 공공데이터 품질관리체계를 이해하고, 저품질 공공데이터의 오류와 발생원인에 대해 알아본다. 오류 데이터 분석을 통한 보안위협에 따른 위험 분류를 통해 효과적인 대응방안을 도출하는 것을 목표로 한다. 이를 위해 공공데이터를 데이터 품질 점검하여 도메인별 오류데이터를 살펴보고, 오류데이터 발생원인에 대한 분석을 통해 보안위협과 공공데이터를 사용하는 사용자 측면과 기관 측면의 보안 문제를 분류하였다. 분류된 오류 발생원인별 보안문제를 기준으로 데이터 품질관리를 통한 개선방향을 제시하고, 품질관리 오류 개선방향별 데이터보안 정책별 보안기술을 비교 정리하여, 데이터 보안기술을 통한 품질관리 오류 개선 연계 대응방안을 제안하였다.

Data Structure Quality Management for efficient CRM (효율적인 CRM을 위한 데이터구조 품질관리 방안)

  • Lee, Sun-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.1-5
    • /
    • 2007
  • 고객 데이터 중심의 통합을 근간으로 하는 CRM을 추진하면서 데이터 품질은 필수적인 선결과제로 인식되고 있어, 데이터 품질 개선을 위해 데이터, 데이터구조, 데이터관리프로세스를 대상으로 활발한 연구가 진행되고 있다. 본 논문에서는 데이터 품질 개선을 위해 표준화를 통한 데이터구조에 대한 품질관리 모델을 제안하고, 제시한 모델을 적용하여 기존 시스템의 관리 항목을 현저히 감소시켜 데이터구조의 품질을 개선하고 데이터구조 표준화 관리 시스템을 통하여 지속적인 개선이 가능하도록 하였다.

  • PDF

A Study of Data Quality Management Maturity Model (데이터품질관리 성숙도모델에 대한 연구)

  • Kim, Chan-Soo;Park, Joo-Seok
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.4 s.50
    • /
    • pp.249-275
    • /
    • 2003
  • In companies competing for today's information society, Data quality deterioration is causing a negative influence to generate company competitiveness fall and new cost. A lot of Preceding study about data qualify have been proceeded in order to solve a problem of these data qualify deterioration. Among the sides of data qualify, it has been studied mainly on qualify of the data valve and quality of data service that are the results quality concept. However. this study studied structural qualify of the data which were cause quality concept in a viewpoint of meta data management and presented data quality management maturity model through this. Also empirically this study verified that data quality improved if the management level matured.

Process-based e-Catalog Data Quality Management (프로세스 기반의 전자카탈로그 데이터 품질관리)

  • Kim, Sun-Ho;Lee, Chang-Soo;Lee, Je-Hyun
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.3
    • /
    • pp.39-57
    • /
    • 2009
  • As electronic commerce becomes more common and the data volume of e-catalog increases, a systematic approach to data quality management is being required. Upon the necessity, we propose a process-based framework for e-catalog data quality management. This is the methodology for data management and improvement activities continuously performed to satisfy the expectation of industry to e-catalog systems. In the framework, contents for quality management consist of data, quality management items, and quality management processes. These are again subdivided according to organization levels, i.e, user, data administrator, and chief information officer.

  • PDF

Improving data quality through Data Owners management (데이터 오너 관리를 통한 데이터 품질 향상)

  • Park, Ji-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.278-281
    • /
    • 2007
  • 데이터 품질 기준은 반드시 현업의 입장에서 바라봐야 하며, 현업의 마인드가 데이터 품질에 가장 결정적인 영향을 미친다. 이에 따라 데이터 품질을 향상시키기 위해서는 현업이 데이터 품질 관리에 직접 참여할 수 있는 연구가 필요하다. 본 연구에서는 데이터 값(Data Value)에 대한 데이터 오너 (Owner)를 부여하여 데이터 품질 오류 시 현업이 직접 데이터 품질 관리 프로세스에 참여 할 수 있는 방안을 제시하였다. 데이터 품질 관리 프로세스는 데이터 품질 대상 및 기준을 정의하고 측정, 분석, 개선하는 방법이다. 본 연구에서 제시한 데이터 오너 관리 방안은 보다 효율적인 데이터 품질 관리 프로세스를 개선 시킬 수 있을 것이다.

알짜정보- 데이터 품질 관리

  • Kim, Mun-Yeong
    • Digital Contents
    • /
    • no.2 s.141
    • /
    • pp.114-121
    • /
    • 2005
  • 많은 기업에서 애써 외면하려고 하는 데이터의 품질이 비즈니스에 미치는 영향을 생각해 본 적이 있는가? 이 글에서는 데이터 품질을 평가하기 위한 요소와 현재 접근되고 있는 데이터 품질 관리의 한계점, 그리고 품질관리 프로젝트의 어려운 점을 분석해보며 이를 극복하기 위한 프레임워크를 제안한다.

  • PDF

The Necessity and Case Analysis of Bigdata Quality Control in Medical Institution (의료기관 빅데이터 품질관리의 필요성과 사례 분석)

  • Choi, Hye Rin;Lee, Seung Won;Kim, YoungAh;Lee, Jong Ho;Koh, Hong;Kim, Hyeon Chang
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • The use of Bigdata plays an important role in all areas of society. Especially in the health care field, the role of Bigdata is very considerable because it deals with people's life and health. However, the interest and awareness of quality control of medical data is markedly low. Because the low-quality medical Bigdata leads to national loss and public health impairment, quality control of medical Bigdata is needed. The purpose of this research is to present the direction of medical Bigdata quality management by examining literature and cases of domestic and foreign medical Bigdata quality management practices. In addition, as a case of medical Bigdata quality control in the Y medical institution in Korea, activities of a Bigdata quality management TFT and results of a survey conducted for major data users in the hospital were presented.

  • PDF

Design of Appliance for Data Quality Management (데이터품질관리를 위한 어플라이언스 설계)

  • Yang, Seungyeon;Park, Seok-Cheon;Moon, Seung Shig;Lee, Jinhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.890-893
    • /
    • 2013
  • 데이터품질관리에 대한 인식과 수요가 증가하고 있다. 그러나 데이터품질관리를 수행하기 위해서는 고려해야 할 사항들이 많아짐에 따라 보다 효과적이고 경제적인 데이터품질관리를 위해 새로운 방안이 모색되고 있다. 데이터품질관리 어플라이언스의 구성은 데이터베이스, 서버, 스토리지, 솔루션으로 이루어져있다. 시스템 구성의 용이성뿐만 아니라 추후 사용자의 관리와 유지보수 체계도 단일화 되어 현재의 시스템보다 사용자의 만족도가 상승할 것으로 판단된다. 본 연구에서는 효율적인 데이터품질관리를 위한 데이터품질관리 어플라이언스의 구성과 체계에 대해 분석하였다.