• Title/Summary/Keyword: 데이터 오차

Search Result 2,268, Processing Time 0.031 seconds

Performance Comparison Between Neural Network Model and Statistical Models (통계적 모델과 신경회로망 모델의 성능 비교에 관한 연구)

  • Han, Seung-Soo;Kim, In-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2401-2403
    • /
    • 2000
  • 시스템의 특성을 이해하고 신뢰성 있는 제어를 위해서는 시스템에 대한 정확한 모델을 필요로 한다. 이러한 목적을 위해서 많은 연구자들에 의한 다양한 방법의 모델링 방법이 계속되어 연구되어지고 있다. 현재 많이 사용하는 모델링 방법 중에는 통계적 기법을 이용하는 것, first principle 방법을 이용하는 것, 지능형 기법을 이용하는 방법 등이 있다. 본 연구에서는 통계적 방법인 fractional factorial 방법을 이용한 모델, Taguchi 방법을 이용한 모델, 그리고 지능형 방법인 신경회로망을 이용한 모델의 3가지 모델을 사용해서 각 모델의 학습오차와 예측오차 등의 특성을 비교하였다. 모델에 사용된 데이터는 비선형 시스템인 플라즈마 화학 증착 장비(Plasma-Enhnaced Chemical Vapor Deposition : PECVD)에 의해 증착된 산화막 실험 데이터이다. 각 모델에 대해서 PECVD 데이터를 사용하여 모델을 만들었을 때 각 모델의 학습오차와 학습오차 변위, 그리고 예측오차와 예측오차변위를 조사하였다. 세가지 모델 모두 학습오차가 예측오차보다 작았으며 변위 또한 학습오차변위가 예측오차변위보다 작았다. 본 연구 결과는 일반적으로 신경회로망에 의한 오차가 다른 통계적인 방법에 의한 오차보다 작음을 보여준다.

  • PDF

Predictive Optimization Adjusted With Pseudo Data From A Missing Data Imputation Technique (결측 데이터 보정법에 의한 의사 데이터로 조정된 예측 최적화 방법)

  • Kim, Jeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.200-209
    • /
    • 2019
  • When forecasting future values, a model estimated after minimizing training errors can yield test errors higher than the training errors. This result is the over-fitting problem caused by an increase in model complexity when the model is focused only on a given dataset. Some regularization and resampling methods have been introduced to reduce test errors by alleviating this problem but have been designed for use with only a given dataset. In this paper, we propose a new optimization approach to reduce test errors by transforming a test error minimization problem into a training error minimization problem. To carry out this transformation, we needed additional data for the given dataset, termed pseudo data. To make proper use of pseudo data, we used three types of missing data imputation techniques. As an optimization tool, we chose the least squares method and combined it with an extra pseudo data instance. Furthermore, we present the numerical results supporting our proposed approach, which resulted in less test errors than the ordinary least squares method.

The accuracy analysis and The practical use of the Total Surveying System with PBLIS data (PBLIS 데이터를 이용하여 토탈측량시스템의 정확도 분석 및 활용)

  • Kim, Kam-Lae;Ra, Yoong-Hwa;Park, Jun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.531-534
    • /
    • 2003
  • 본 연구는 지적도면전산화사업으로 수치화된 데이터를 PBLIS에 이용하여 지적업무를 수행하고 있으며, 이 데이터를 토탈측량시스템(Pen컴퓨터)에 활용함으로서 도해지적에서 발생되는 제도오차, 축척오차 및 지적도면의 신축오차 등의 기술적인 오차와 측량을 할 때마다 측량사에 따른 개인오차를 제거하여 정확도를 향상시키고, 인접 필지의 반복적인 실형 측량을 배제함으로서 현장에서 소요되는 시간이 절약하게 될 것이다.

  • PDF

User Assistant Soft Computing Method for 3D Effect Optimization (입체효과 최적화를 위한 사용자 보조 소프트 컴퓨팅 기법)

  • 최우경;김종수;하상형;김성현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.419-422
    • /
    • 2004
  • 본 논문에서는 신경망 학습을 위한 데이터 획득시 생길 수 있는 오차를 줄이기 위해 획득 데이터에 대한 전처리 과정을 퍼지로써 구현하는 알고리즘을 제안하였다 신경망은 주어진 정보를 이용하여 학습을 가능하게 함으로써 시스템의 특징을 추출하는데 매우 우수한 능력을 발휘하고 있다 그러나 이는 학습에 사용하는 데이터에 오차가 포함되지 않는다는 점을 전제로 하고 있다. 그런데 데이터 획득과정이 인간의 주관적 판단에 의해 수작업으로 이루어지는 경우 학습 데이터는 오차가 존재할 수 있다. 학습 데이터의 오차를 줄이기 위해 조기에 획득된 데이터를 분석하고 추가적인 후보 데이터를 선정하여 데이터 획득 과정에서 큰 영향을 미치는 물체의 거리와 크기를 모두 고려할 수 있도록 퍼지 모델로써 구현하고자 한다.

  • PDF

Approximate Aggregation and Effective Error Estimation using Histogram (히스토그램을 이용한 근사적 집단 연산과 효과적인 오차 추정)

  • 안성준;배진욱;심마로;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.18-20
    • /
    • 1999
  • 히스토그램은 데이터베이스 질의 최적기가 사용하는 통게정보 중의 하나이다. 최근에는 데이터베이스의 크기가 기하급수적으로 커짐에 따라, 데이터의 전체적인 성향을 빠르게 파악할 수 있는 방법의 하나로 히스토그램으로 활용하는 방안이 고려되고 있다. 그를 위해서, 히스토그램에서 얻어진 근사값의 오차를 추정할 수 있는 방법이 요구되었다. 기존의 기법에서는 히스토그램의 각 버켓에 실제 빈도와 평균 빈도의 최대차를 추가하고, 이 값을 이용하여 오차추정을 하였다. 그러나, 이 값이 히스토그램 버켓의 전체적인 데이터 분포를 잘 반영하지 못하기 때문에 실제 오차에 근접한 오차 추정을 할 수가 없는 단점이 있었다. 본 논문에서는 이를 극복하기 위해, 히스토그램에 데이터의 분포를 잘 반영하는 정보 즉, 평균값, COUNT/SUM 연산에 대한 최대 오차를 추가하였다. 이 정보들을 이용하여 실제 오차에 보다 근접한 오차 추정을 할 수 있었으며, 부가적으로 SUM/AVG 연산에 대한 보다 정확한 근사값을 얻을 수 있었다.

  • PDF

Processing of uncertain position of regularly sampling moving objects (주기적인 위치보고 이동체의 불확실 위치 처리)

  • 진희규;김동현;임덕성;홍봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.241-243
    • /
    • 2004
  • 위치기반서비스 응용 분야에서 위치 데이터를 저장하기 위하여 일반적으로 이동체의 위치 데이터를 주기적으로 수집한다. 주기적으로 수집된 위치 데이터는 보고 주기 사이의 위치 변화를 반영하지 못하기 때문에 시간에 대한 선형 함수를 이용하여 예측된 위치 데이터와 오차가 발생한다. 따라서 오차가 존재하는 불확실한 미래 위치 데이터로 인하여 미래 위치 색인에서 검색의 정확도가 떨어지는 문제점이 발생한다. 이 논문에서는 주기적인 위치보고 이동체에서 발생하는 불확실한 위치 데이터를 처리하기 위해서 예측된 위치 데이터에 예측 오차분을 반영한 불확실성 영역을 사용한다 그리고 이동체의 불확실성 영역을 설정하기 위하여 최근 예측 오차 가중치 기법과 칼만 필터 기법을 제안하고 이를 기반으로 하는 불확실 위치 처리 기법을 이동체 미래 위치 색인에서 구현하고 성능 비교 평가를 수행한다. 성능 평가 결과에 따르면 기존의 선형함수 기반 예측 기법보다 불확실 위치 처리 기법이 영역 검색의 정확도가 향상되는 장점을 가진다.

  • PDF

Orbit Determination Error Analysis for the KOMPSAT (다목적 실용위성의 궤도 결정 오차 분석)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.437-447
    • /
    • 1998
  • Orbit error analysis was performed for the GPS navigation solutions and ground station tracking data of the KOMPSAT (Korea Multi-Purpose SATellite), which will be launched in 1999 for cartography of Korean peninsula as main mission. A least square method was used for the orbit determination and prediction error simulation including tracking data noises and dynamic modeling errors. It was found that a short-term periodic orbit determination error was caused by the tracking data noise and dominant orbit prediction error was caused by solar flux uncertainty.

  • PDF

KOMPSAT-1 EOC 영상의 기하정확도 분석

  • Kim, Jong-Ah;Jeun, Gab-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.141-148
    • /
    • 2002
  • The purpose of this study is to enhance geo-location accuracy of the image data acquired by the Electro-Optical Camera(EOC) onboard KOMPSAT-1. EOC image data were analyzed to verify geo-location error. It was found that the major contribution was the time mark inaccuracy and attitude knowledge error. This study shows that the geo-location accuracy can be enhanced by modifying the time and attitude data of the ancillary data.

  • PDF

Lithium-Ion Battery Simulation Error Improvement Using Experiment Votage Data (실험 전압 데이터를 이용한 리튬 이온 배터리 시뮬레이션 오차 개선)

  • Nam, Y.A.;Yoon, C.O.;Kim, J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.169-170
    • /
    • 2017
  • 본 논문에서는 Matlab을 이용하여 배터리의 전기적 모델과 내부 파라미터 추출 통해 시뮬레이션을 하였다. IR-drop에 의해 변화한 전압 데이터를 이용하여 부하 전류 변화로 인한 시뮬레이션과 실험 데이터 간의 오차 개선함으로써 배터리 전기적 모델과 실험 전압 데이터를 이용함으로써 확장 칼만 필터(extended kalman filter; EKF) 같은 적응 알고리즘을 사용하지 않고도 오차가 감소된 시뮬레이션이 가능함을 확인하였다.

  • PDF

User Assistant Soft Computing Method for 3D Effect Optimization (입체효과 최적화를 위한 사용자 보조 소프트컴퓨팅 기법)

  • Choi Woo-Kyung;Kim Seong-Joo;Jeon Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2005
  • In this paper, we suggested user assistant soft computing method for 3D effect optimization. In order to maximize 3D effect of image, intervals among cameras have to be set up properly according to distance between cameras and an object. Two data such as interval and distance was obtained to use in neural network as the data for learning. However, if the data for learning was obtained by only human's subjective views, it could be that the obtained data was not optimal for learning because the data had an accidental ewer To obtain optimal data lot learning, we added candidature data to obtained data through data analysis, and then selected the most proper data between the candidature data and the obtained data for learning in neural network. Usually, 3D effect of image was affected by both distance from an object to cameras and an object size. Therefore, we suggested fuzzy inference model which was able to represent two factors like distance and size. Candidature data was added by fuzzy model. In the simulation result, we verified that the mote the obtained data was affected by human's subjective views, the more effective the suggested system was.