• Title/Summary/Keyword: 데이터 사전

Search Result 2,034, Processing Time 0.033 seconds

PLIB 파트42를 이용한 자동차 부품의 데이터사전

  • 김영범;조준면
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.289-304
    • /
    • 2001
  • ◆ 자동차 부품 데이터사전의 작성 ㆍ PLIB Part42의 방법론 적용 ㆍ ESPRIT PLUS Project 방법론의 적용 ㆍ 자동차 부품 데이터사전의 제시 ㆍ 전자상거래를 위한 정보 표준화 방향을 제시 ◆ 데이터사전 방법론의 유용성 확인 ㆍ 검색, 확장, 수정의 유용성 확인

  • PDF

Design and Implementation of Dictionary-based Column Name Standardization System (사전기반 항목명 표준화 시스템 설계 및 구현)

  • Shin, Su-Mi;Moon, Young-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.621-624
    • /
    • 2021
  • 최근 빅데이터에 대한 관심이 높아지면서 분석을 위해 필요한 데이셋의 표준화에 대한 중요성이 강조되고 있다. 데이터 표준화를 위해서는 업무 처리에 필요한 모든 데이터의 명명 규칙을 규정하고 그 기준에 따라 표준 명칭을 부여하여야 한다. 본 연구에서는 사전을 기반으로 하는 항목명 표준화 시스템을 제안하였다. 제안한 시스템은 공개된 표준단어사전을 활용하여 유의어를 포함한 참조 사전을 구축하고 이를 기반으로 표준사전을 구축하여 표준 항목명을 제공한다. 기 구축된 데이터셋의 항목명을 입력하거나 사용자가 원하는 새로운 항목명을 입력하면 항목명 표준화 시스템은 표준화된 한글 항목명과 영문 항목명, 그리고 테이블 설계에 사용하는 영문 약어명을 출력한다. 본 연구에서 제안한 시스템을 테이블 설계에 활용하거나 기 구축된 데이터셋을 표준화하는데 적용하면 일관된 데이터 해석이나 관리가 가능할 것으로 기대된다.

  • PDF

An Empirical Study on Quality Improvement by Data Standardization for Distributed Goods (유통 상품의 데이터 품질 관리를 위한 데이터 표준화에 대한 연구)

  • Song, Jang-Seop;Rhew, Sung-Yul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.101-109
    • /
    • 2013
  • Data quality management is extremely important. In this study, we proposed data standardization for effective quality management of enterprise-owned data about distributed goods and validated its effectiveness by case study. For the standardization of data, we designed data category and data dictionary. Additionally, we categorized data and identified its attributes for data category design, and we developed design process for data dictionary and built the dictionary of word, term, domain and code for data dictionary design. And then we proposed output documents which have to be written for data standardization. Proposed data standardization approach is validated its efficiency by quantitative and qualitative measurement. and as a result the data quality of the data standardization improved 24% and the data quality of the consistency of the data dictionary improved 7%.

Named Entity Recognition based on ELECTRA with Dictionary Features and Dynamic Masking (사전 기반 자질과 동적 마스킹을 이용한 ELECTRA 기반 개체명 인식)

  • Kim, Jungwook;Whang, Taesun;Kim, Bongsu;Lee, Saebyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.509-513
    • /
    • 2021
  • 개체명 인식이란, 문장에서 인명, 지명, 기관명, 날짜, 시간 등의 고유한 의미의 단어를 찾아서 미리 정의된 레이블로 부착하는 것이다. 일부 단어는 문맥에 따라서 인명 혹은 기관 등 다양한 개체명을 가질 수 있다. 이로 인해, 개체명에 대한 중의성을 가지고 있는 단어는 개체명 인식 성능에 영향을 준다. 본 논문에서는 개체명에 대한 중의성을 최소화하기 위해 사전을 구축하여 ELECTRA 기반 모델에 적용하는 학습 방법을 제안한다. 또한, 개체명 인식 데이터의 일반화를 개선시키기 위해 동적 마스킹을 이용한 데이터 증강 기법을 적용하여 실험하였다. 실험 결과, 사전 기반 모델에서 92.81 %로 성능을 보였고 데이터 증강 기법을 적용한 모델은 93.17 %로 높은 성능을 보였다. 사전 기반 모델에서 추가적으로 데이터 증강 기법을 적용한 모델은 92.97 %의 성능을 보였다.

  • PDF

Sentence Unit De-noising Training Method for Korean Grammar Error Correction Model (한국어 문법 오류 교정 모델을 위한 문장 단위 디노이징 학습법)

  • Hoonrae Kim;Yunsu Kim;Gary Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.507-511
    • /
    • 2022
  • 문법 교정 모델은 입력된 텍스트에 존재하는 문법 오류를 탐지하여 이를 문법적으로 옳게 고치는 작업을 수행하며, 학습자에게 더 나은 학습 경험을 제공하기 위해 높은 정확도와 재현율을 필요로 한다. 이를 위해 최근 연구에서는 문단 단위 사전 학습을 완료한 모델을 맞춤법 교정 데이터셋으로 미세 조정하여 사용한다. 하지만 본 연구에서는 기존 사전 학습 방법이 문법 교정에 적합하지 않다고 판단하여 문단 단위 데이터셋을 문장 단위로 나눈 뒤 각 문장에 G2P 노이즈와 편집거리 기반 노이즈를 추가한 데이터셋을 제작하였다. 그리고 문단 단위 사전 학습한 모델에 해당 데이터셋으로 문장 단위 디노이징 사전 학습을 추가했고, 그 결과 성능이 향상되었다. 노이즈 없이 문장 단위로 분할된 데이터셋을 사용하여 디노이징 사전 학습한 모델을 통해 문장 단위 분할의 효과를 검증하고자 했고, 디노이징 사전 학습하지 않은 기존 모델보다 성능이 향상되는 것을 확인하였다. 또한 둘 중 하나의 노이즈만을 사용하여 디노이징 사전 학습한 두 모델의 성능이 큰 차이를 보이지 않는 것을 통해 인공적인 무작위 편집거리 노이즈만을 사용한 모델이 언어학적 지식이 필요한 G2P 노이즈만을 사용한 모델에 필적하는 성능을 보일 수 있다는 것을 확인할 수 있었다.

  • PDF

Component Implementation of Electronic Dictionary (전자사전 컴포넌트의 구현)

  • Choe, Seong-Un
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.587-592
    • /
    • 2001
  • Many applications are being developed to automate office works, and the electronic dictionary(e-Dictionary) is one of the main components of the office suites. Several requirements are proposed for the efficient e-dictionaries :1) Fast searching time, 2) Data compatibility with other e-dictionaries to deal with words and obsolete word, and 3) Reusable components to develop new customized e-dictionaries with minimized development time and cost. We propose a data format with which any e-dictionary can change data with others. We also develop System Dictionary component and Customer Dictionary component to enable-and-play component reuse. Our e-dictionary achieves fast searching time by efficiently managing Trie and B-tree index structure for the dictionary components.

  • PDF

Pre-trained Language Model for Table Question and Answering (표 질의응답을 위한 언어 모델 학습 및 데이터 구축)

  • Sim, Myoseop;Jun, Changwook;Choi, Jooyoung;Kim, Hyun;Jang, Hansol;Min, Kyungkoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.335-339
    • /
    • 2021
  • 기계독해(MRC)는 인공지능 알고리즘이 문서를 이해하고 질문에 대한 정답을 찾는 기술이다. MRC는 사전 학습 모델을 사용하여 높은 성능을 내고 있고, 일반 텍스트문서 뿐만 아니라 문서 내의 테이블(표)에서도 정답을 찾고자 하는 연구에 활발히 적용되고 있다. 본 연구에서는 기존의 사전학습 모델을 테이블 데이터에 활용하여 질의응답을 할 수 있는 방법을 제안한다. 더불어 테이블 데이터를 효율적으로 학습하기 위한 데이터 구성 방법을 소개한다. 사전학습 모델은 BERT[1]를 사용하여 테이블 정보를 인코딩하고 Masked Entity Recovery(MER) 방식을 사용한다. 테이블 질의응답 모델 학습을 위해 한국어 위키 문서에서 표와 연관 텍스트를 추출하여 사전학습을 진행하였고, 미세 조정은 샘플링한 테이블에 대한 질문-답변 데이터 약 7만건을 구성하여 진행하였다. 결과로 KorQuAD2.0 데이터셋의 테이블 관련 질문 데이터에서 EM 69.07, F1 78.34로 기존 연구보다 우수한 성능을 보였다.

  • PDF

Text segmentation using concept hierarchy tree (계층적 개념 트리를 이용한 문서 분할 기법)

  • 이병희;최익규;박승규;김인구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.166-168
    • /
    • 2003
  • 문서 분할 기법은 문서 내에 존재하는 다양한 주제들을 자동적으로 추출하는 기법이다. 이 분야의 연구는 크게 사전적 관계에 근거한 기법과 통계적 데이터에 근거한 기법으로 나누어져 연구되어 왔다. 사전적 관계에 의한 기법은 단어들의 사전적 의미와 관계에 근거한 기법이고 통계적 데이터에 의한 기법은 주로 단어들의 분포를 이용한 기법이다. 여기에는 몇가지 문제점이 있는데 사전적 관계에 근거한 경우에는 분산된 주제들을 통합하여 추출하기 어렵고. 통계적 데이터에 근거한 기법은 정확한 주제의 개수를 찾기 어렵다는 점이다. 본 논문에서는 계층적 개념 트리를 이용하여 보다 정확한 개수의 주제들을 찾아낼 수 있는 문서 분할 기법에 대해 소개 하고자 한다.

  • PDF

Constructing the Dictionary of Flue using unstructured data (비정형 데이터를 활용한 감기 판단 사전 구축)

  • Kim, KangMin;Nam, KiHun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1187-1190
    • /
    • 2015
  • 최근에 비정형 데이터의 잠재적 가치를 유용한 데이터로써 사용하려는 경우가 많아지고 있다. 특히 트위터는 사용자의 상태나 이벤트가 잘 나타나 있어서 하나의 사용자의 이벤트로서 간주될 수 있다. 본 논문은 트위터에서 발생하는 이벤트에 주목하여, 감기라는 이벤트를 트위터 내에서 추적하고자 한다. 추적을 위해서는 트위터를 판단할 필요가 있는데, 이를 위해 기존의 감성 사전 방식 중 하나인 통계적 사전 구축을 기반으로 키워드를 활용하여 감기 판단 사전을 구축하는 방식을 제안한다.

Domain-agnostic Pre-trained Language Model for Tabular Data (도메인 변화에 강건한 사전학습 표 언어모형)

  • Cho, Sanghyun;Choi, Jae-Hoon;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.346-349
    • /
    • 2021
  • 표 기계독해에서는 도메인에 따라 언어모형에 필요한 지식이나 표의 구조적인 형태가 변화하면서 텍스트 데이터에 비해서 더 큰 성능 하락을 보인다. 본 논문에서는 표 기계독해에서 이러한 도메인의 변화에 강건한 사전학습 표 언어모형 구축을 위한 의미있는 표 데이터 선별을 통한 사전학습 데이터 구축 방법과 적대적인 학습 방법을 제안한다. 추출한 표 데이터에서 구조적인 정보가 없이 웹 문서의 장식을 위해 사용되는 표 데이터 검출을 위해 Heuristic을 통한 규칙을 정의하여 HEAD 데이터를 식별하고 표 데이터를 선별하는 방법을 적용했으며, 구조적인 정보를 가지는 일반적인 표 데이터와 엔티티에 대한 지식 정보를 가지는 인포박스 데이터간의 적대적 학습 방법을 적용했다. 기존의 정제되지 않는 데이터로 학습했을 때와 비교하여 데이터를 정제하였을 때, KorQuAD 표 데이터에서 f1 3.45, EM 4.14가 증가하였으며, Spec 표 질의응답 데이터에서 정제하지 않았을 때와 비교하여 f1 19.38, EM 4.22가 증가한 성능을 보였다.

  • PDF