• Title/Summary/Keyword: 데이터 분석론

Search Result 1,383, Processing Time 0.026 seconds

Proposal Methodology for Disaster Risk Analysis by Region Using RFM Model (RFM 모형을 활용한 지역별 재해 위험도 분석 방법론 제안)

  • Kim, TaeJin;Kim, SungSoo;Jeon, DaHee;Park, SangHyun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.493-504
    • /
    • 2020
  • Purpose: The purpose of this study is to propose an analytical methodology for selecting the priority of preventive projects in the course of carrying out disaster prevention projects that improve disaster-hazardous areas. Method: Data analysis was performed using RFM model which can divide data grade and perform target marketing based on Recency, Frequency, and Monetary. Result: The top 10% of the area with high RFM value was mainly in the East Sea and the South Sea coast, and the number of damage in private facilities was high. Conclusion: In this study, we used the RFM model to select the priority of disaster risk and to implement the regional disaster risk using GIS. These results are expected to be used as basic data for selecting priority project sites for disaster prevention projects and as basic data in the decision-making process for disaster prevention projects.

A Sequential Pattern Analysis for Dynamic Discovery of Customers' Preference (고객의 동적 선호 탐색을 위한 순차패턴 분석: (주)더페이스샵 사례)

  • Song, Ki-Ryong;Noh, Soeng-Ho;Lee, Jae-Kwang;Choi, Il-Young;Kim, Jae-Kyeong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.195-209
    • /
    • 2008
  • Customers' needs change every moment. Profitability of stores can't be increased anymore with an existing standardized chain store management. Accordingly, a personalized store management tool needs through prediction of customers' preference. In this study, we propose a recommending procedure using dynamic customers' preference by analyzing the transaction database. We utilize self-organizing map algorithm and association rule mining which are applied to cluster the chain stores and explore purchase sequence of customers. We demonstrate that the proposed methodology makes an effect on recommendation of products in the market which is characterized by a fast fashion and a short product life cycle.

Semiparametric Approach to Logistic Model with Random Intercept (준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1121-1131
    • /
    • 2015
  • Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.

A Method of Color KANSEI Information Extraction in Video Data (비디오 데이터에서의 컬러 감성 정보 추출 방법)

  • Choi, Jun-Ho;Hwangi, Myung-Gwon;Choi, Chang;Kim, Pan-Koo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.532-535
    • /
    • 2008
  • The requirement of Digital Culture Content(Movie, Music, Animation, Digital TV, Exhibition and etc.) is increasing so variety and quantity of content is also increasing. The Movie what majority of the digital Content is developing of technology and data. In the result, the efficient retrieval service has required and user want to use a recommendation engine and semantic retrieval methods through the recommendation system. Therefore, this paper will suggest analysing trait element of digital content data, building of retrieval technology, analysing and retrieval technology base on KANSEI vocabulary and etc. For the these, we made a extraction technology of trait element based on semantics and KANSEI processing algorithm based on color information.

  • PDF

Trends Analysis on Research Articles of the Sharing Economy through a Meta Study Based on Big Data Analytics (빅데이터 분석 기반의 메타스터디를 통해 본 공유경제에 대한 학술연구 동향 분석)

  • Kim, Ki-youn
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.97-107
    • /
    • 2020
  • This study aims to conduct a comprehensive meta-study from the perspective of content analysis to explore trends in Korean academic research on the sharing economy by using the big data analytics. Comprehensive meta-analysis methodology can examine the entire set of research results historically and wholly to illuminate the tendency or properties of the overall research trend. Academic research related to the sharing economy first appeared in the year in which Professor Lawrence Lessig introduced the concept of the sharing economy to the world in 2008, but research began in earnest in 2013. In particular, between 2006 and 2008, research improved dramatically. In order to grasp the overall flow of domestic academic research of trends, 8 years of papers from 2013 to the present have been selected as target analysis papers, focusing on titles, keywords, and abstracts using database of electronic journals. Big data analysis was performed in the order of cleaning, analysis, and visualization of the collected data to derive research trends and insights by year and type of literature. We used Python3.7 and Textom analysis tools for data preprocessing, text mining, and metrics frequency analysis for key word extraction, and N-gram chart, centrality and social network analysis and CONCOR clustering visualization based on UCINET6/NetDraw, Textom program, the keywords clustered into 8 groups were used to derive the typologies of each research trend. The outcomes of this study will provide useful theoretical insights and guideline to future studies.

A Development of 3D Simulation and Quantitative Analysis Method for Urban Landscape Design Evaluation System (총합적 경관평가시스템 구축을 위한 3차원 공간차폐 시뮬레이션 및 미디어화 분석기술)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5140-5147
    • /
    • 2012
  • It is difficult for systematic and flexible control reflecting regional characteristics with only public policies that control the landscape. Also, in the event that there is no preceding quantitative index calculation, it is impossible for the public society to come to an agreement. Therefore, the development of a shielding analysis simulation methodology that makes data processing modeling that can be interlinked with the urban information system is a very meaningful study. Thus, this study presents urban space shielding simulation technologies and quantitative analysis methodologies using 3D graphic engines and deduces the optimal design by integrating the data of the geographic information system (GIS) in order to suggest the potential as an analysis model that can be used in future urban information systems.

Factor Analysis on Use Value of Academic Journals (학술지 이용 가치에 영향을 미치는 요인 분석)

  • Kim, Hee-Sop;Lee, Se-Eun;Hwang, Hye-Kyong
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.3
    • /
    • pp.339-355
    • /
    • 2008
  • The purpose of this empirical case study is to explore what factors affect on the economic valuation of academic journals and to ascertain the degree of each impact. For this study, factors were categorized into three groups: internal factors external factors and demand theory factors. The on-line questionnaire was used to collect data and 383 responded from individual users of and the persons in charge of the DDS(Document Delivery Service). Collected data were analyzed using SPSS 12.0 for Windows/PC. The result showed that there exist a strong relationship between the internal factors of academic journals(i.e., Impact Factor, Cost, and Language) and economic valuation in terms of its use value.

Comparing Methodology of Building Energy Analysis - Comparative Analysis from steady-state simulation to data-driven Analysis - (건물에너지 분석 방법론 비교 - Steady-state simulation에서부터 Data-driven 방법론의 비교 분석 -)

  • Cho, Sooyoun;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2017
  • Purpose: Because of the growing concern over fossil fuel use and increasing demand for greenhouse gas emission reduction since the 1990s, the building energy analysis field has produced various types of methods, which are being applied more often and broadly than ever. A lot of research products have been actively proposed in the area of the building energy simulation for over 50 years around the world. However, in the last 20 years, there have been only a few research cases where the trend of building energy analysis is examined, estimated or compared. This research aims to investigate a trend of the building energy analysis by focusing on methodology and characteristics of each method. Method: The research papers addressing the building energy analysis are classified into two types of method: engineering analysis and algorithm estimation. Especially, EPG(Energy Performance Gap), which is the limit both for the existing engineering method and the single algorithm-based estimation method, results from comparing data of two different levels- in other words, real time data and simulation data. Result: When one or more ensemble algorithms are used, more accurate estimations of energy consumption and performance are produced, and thereby improving the problem of energy performance gap.

A Study on Keywords Extraction based on Semantic Analysis of Document (문서의 의미론적 분석에 기반한 키워드 추출에 관한 연구)

  • Song, Min-Kyu;Bae, Il-Ju;Lee, Soo-Hong;Park, Ji-Hyung
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.586-591
    • /
    • 2007
  • 지식 관리 시스템, 정보 검색 시스템, 그리고 전자 도서관 시스템 등의 문서를 다루는 시스템에서는 문서의 구조화 및 문서의 저장이 필요하다. 문서에 담겨있는 정보를 추출하기 위해 가장 우선시되어야 하는 것은 키워드의 선별이다. 기존 연구에서 가장 널리 사용된 알고리즘은 단어의 사용 빈도를 체크하는 TF(Term Frequency)와 IDF(Inverted Document Frequency)를 활용하는 TF-IDF 방법이다. 그러나 TF-IDF 방법은 문서의 의미를 반영하지 못하는 한계가 존재한다. 이를 보완하기 위하여 본 연구에서는 세 가지 방법을 활용한다. 첫 번째는 문헌 속에서의 단어의 위치 및 서론, 결론 등의 특정 부분에 사용된 단어의 활용도를 체크하는 문헌구조적 기법이고, 두 번째는 강조 표현, 비교 표현 등의 특정 사용 문구를 통제 어휘로 지정하여 활용하는 방법이다. 마지막으로 어휘의 사전적 의미를 분석하여 이를 메타데이터로 활용하는 방법인 언어학적 기법이 해당된다. 이를 통하여 키워드 추출 과정에서 문서의 의미 분석도 수행하여 키워드 추출의 효율을 높일 수 있다.

  • PDF

Face Recognition via Sparse Representation using the ROMP Method (ROMP를 이용한 희소 표현 방식 얼굴 인식 방법론)

  • Ahn, Jung-Ho;Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.347-356
    • /
    • 2017
  • It is well-known that the face recognition method via sparse representation has been proved very robust and showed good performance. Its weakness is, however, that its time complexity is very high because it should solve $L_1$-minimization problem to find the sparse solution. In this paper, we propose to use the ROMP(Regularized Orthogonal Matching Pursuit) method for the sparse solution, which solves the $L_2$-minimization problem with regularization condition using the greed strategy. In experiments, we shows that the proposed method is comparable to the existing best $L_1$-minimization solver, Homotopy, but is 60 times faster than Homotopy. Also, we proposed C-SCI method for classification. The C-SCI method is very effective since it considers the sparse solution only without reconstructing the test data. It is shown that the C-SCI method is comparable to, but is 5 times faster than the existing best classification method.