• Title/Summary/Keyword: 데이터 변화 탐지

Search Result 311, Processing Time 0.032 seconds

Wide-area Surveillance Applicable Core Techniques on Ship Detection and Tracking Based on HF Radar Platform (광역감시망 적용을 위한 HF 레이더 기반 선박 검출 및 추적 요소 기술)

  • Cho, Chul Jin;Park, Sangwook;Lee, Younglo;Lee, Sangho;Ko, Hanseok
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.313-326
    • /
    • 2018
  • This paper introduces core techniques on ship detection and tracking based on a compact HF radar platform which is necessary to establish a wide-area surveillance network. Currently, most HF radar sites are primarily optimized for observing sea surface radial velocities and bearings. Therefore, many ship detection systems are vulnerable to error sources such as environmental noise and clutter when they are applied to these practical surface current observation purpose systems. In addition, due to Korea's geographical features, only compact HF radars which generates non-uniform antenna response and has no information on target information are applicable. The ship detection and tracking techniques discussed in this paper considers these practical conditions and were evaluated by real data collected from the Yellow Sea, Korea. The proposed method is composed of two parts. In the first part, ship detection, a constant false alarm rate based detector was applied and was enhanced by a PCA subspace decomposition method which reduces noise. To merge multiple detections originated from a single target due to the Doppler effect during long CPIs, a clustering method was applied. Finally, data association framework eliminates false detections by considering ship maneuvering over time. According to evaluation results, it is claimed that the proposed method produces satisfactory results within certain ranges.

수학적 모폴로지의 경계치 변화에 의한 도시환경 지형지물 추출 및 분리응용

  • O, Se-Gyeong;Lee, Gi-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.139-143
    • /
    • 2004
  • 최근 고 해상도 위성영상정보의 민간 활용에 대한 수요가 증가하면서 기존의 공간 정보를 다루는 여러 응용분야에서 이에 관련된 많은 연구를 하고 있다. 도시교통 환경 분석을 위하여 위성영상정보를 처리하는 과정에 있어서 도로, 건물, 기타 선 구조와 같은 지형지물을 분석하는 과정은 사용자에 따라 주관적일 수 있다. 이러한 배경에서 수학적 그레이 레벨 모폴로지는 하나의 효과적인 접근으로 간주된다. 본 연구에서 지형지물 추출을 위해 윈도우 운영체제에서 실행되는 실질적인 응용 프로그램을 구현하였다. 이 프로그램에서 주요한 지형지물은 그레이 레벨 영상을 이용하여 개방(opening), 폐쇄(closing), 침식(erosion), 팽창(dilation)의 순차적 처리를 통하여 자동적으로 추출된다. 결과적으로, GDPA, 허프 변환 또는 다른 알고리듬들과 비교시 하나의 이점이 된다. 모폴로지 처리와 같이 본 프로그램은 그레이 레벨 값의 범위에 기반하여 지형지물을 추출을 위한 density slicing 기능 또는 주어진 경계치 보다 작은 화소 군집을 제거하는 처리인 'sieve filtering'을 제공한다. 이러한 기능들은 형태학적으로 처리된 결과를 증대하고 지형지물 종류들을 분리하는데 유용하다. 또한 배경의 제거, 잡음 탐지, 도시 환경 원격 탐사에서의 지형지물 특성화에 기여한다. 본 프로그램을 이용하는데 있어서 IKONOS 위성영상을 이용하여 시험 구현하였다. 결과, 다중 경계치 또는 steve filtering을 이용한 그레이 레벨 모폴로지 처리는 복잡한 지형지물과 많은 데이터로 구성된 고해상도 영상 내의 주어진 대상에서 자동적인 처리와 사용자 정의 sieve filtering으로 인한 효과적인 지형지물 추출 방법으로 간주 된다. 시안을 작성 표준화를 위한 첫 단계 시도를 소개하였다.분석 결과는 문장, 그림 및 도표, 장 끝의 질문, 학생의 학습 활동 수 등이 $0.4{\sim}1.5$ 사이의 값으로 학생 참여를 적절히 유도하는 발견 지향적 인 것으로 조사되었다. 그러나 장의 요약은 본문 내용을 반복하는 내용으로 구성되었다. 이와 같이 공통과학 과목은 새로운 현대 사회에 부응하는 교과 목표와 체계를 지향하고 있지만 아직도 통합과학으로서의 내용과 체계를 완전히 갖추고 있지 못할 뿐만 아니라 현재 사용되고 있는 7종의 교과서가 교육 목표를 충분히 반영하지 못하고 있다. 따라서 교사의 역할이 더욱더 중요하게 되었다.괴리가 작아진다. 이 결과에 따르면 위탁증거금의 징수는 그 제도의 취지에 부합되고 있다. 다만 제도운용상의 이유이거나 혹은 우리나라 주식시장의 투자자들이 비합리적인 투자형태를 보임에 따라 그 정책적 효과는 때로 역기능적인 결과로 초래하였다. 그럼에도 불구하고 이 연구결과를 통하여 최소한 주식시장(株式市場)에서 위탁증거금제도는 그 제도적 의의가 여전히 있다는 사실이 확인되었다. 또한 우리나라 주식시장에서 통상 과열투기 행위가 빈번히 일어나 주식시장을 교란시킴으로써 건전한 투자풍토조성에 저해된다는 저간의 우려가 매우 커왔으나 표본 기간동안에 대하여 실증분석을 한 결과 주식시장 전체적으로 볼 때 주가변동율(株價變動率), 특히 초과주가변동율(超過株價變動率)에 미치는 영향이 그다지 심각한 정도는 아니었으며 오히려 우리나라의 주식시장은 미국시장에 비해 주가가 비교적 안정적인 수준을 유지해 왔다고 볼 수 있다.36.4%)와 외식을 선호(29.1%)${\lrcorner}$ 하기 때문에 패스트푸드를 이용하게 된 것으로 응답 하였으며,

  • PDF

Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks (서베일런스 네트워크에서 패턴인식 기반의 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • This paper proposes algorithm to reduce the computing time in a neural network that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. Object Detection can be defined as follows : Given image sequence, which can forom a digitalized image, the goal of object detection is to determine whether or not there is any object in the image, and if present, returns its location, direction, size, and so on. But object in an given image is considerably difficult because location, size, light conditions, obstacle and so on change the overall appearance of objects, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact object detection which overcomes some restrictions by using neural network. Proposed system can be object detection irrelevant to obstacle, background and pose rapidly. And neural network calculation time is decreased by reducing input vector size of neural network. Principle Component Analysis can reduce the dimension of data. In the video input in real time from a CCTV was experimented and in case of color segment, the result shows different success rate depending on camera settings. Experimental results show proposed method attains 30% higher recognition performance than the conventional method.

Advances, Limitations, and Future Applications of Aerospace and Geospatial Technologies for Apple IPM (사과 IPM을 위한 항공 및 지리정보 기술의 진보, 제한 및 미래 응용)

  • Park, Yong-Lak;Cho, Jum Rae;Choi, Kyung-Hee;Kim, Hyun Ran;Kim, Ji Won;Kim, Se Jin;Lee, Dong-Hyuk;Park, Chang-Gyu;Cho, Young Sik
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.135-143
    • /
    • 2021
  • Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, manned and unmanned aircraft, spectral sensors, information systems, and autonomous field equipment, have been used to detect pests and apply control measures site-specifically. Despite the availability of aerospace and geospatial technologies, along with big-data-driven artificial intelligence, applications of such technologies to apple IPM have not been realized yet. Using a case study conducted at the Korea Apple Research Institute, this article discusses the advances and limitations of current aerospace and geospatial technologies that can be used for improving apple IPM.

Region of Interest Extraction and Bilinear Interpolation Application for Preprocessing of Lipreading Systems (입 모양 인식 시스템 전처리를 위한 관심 영역 추출과 이중 선형 보간법 적용)

  • Jae Hyeok Han;Yong Ki Kim;Mi Hye Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.189-198
    • /
    • 2024
  • Lipreading is one of the important parts of speech recognition, and several studies have been conducted to improve the performance of lipreading in lipreading systems for speech recognition. Recent studies have used method to modify the model architecture of lipreading system to improve recognition performance. Unlike previous research that improve recognition performance by modifying model architecture, we aim to improve recognition performance without any change in model architecture. In order to improve the recognition performance without modifying the model architecture, we refer to the cues used in human lipreading and set other regions such as chin and cheeks as regions of interest along with the lip region, which is the existing region of interest of lipreading systems, and compare the recognition rate of each region of interest to propose the highest performing region of interest In addition, assuming that the difference in normalization results caused by the difference in interpolation method during the process of normalizing the size of the region of interest affects the recognition performance, we interpolate the same region of interest using nearest neighbor interpolation, bilinear interpolation, and bicubic interpolation, and compare the recognition rate of each interpolation method to propose the best performing interpolation method. Each region of interest was detected by training an object detection neural network, and dynamic time warping templates were generated by normalizing each region of interest, extracting and combining features, and mapping the dimensionality reduction of the combined features into a low-dimensional space. The recognition rate was evaluated by comparing the distance between the generated dynamic time warping templates and the data mapped to the low-dimensional space. In the comparison of regions of interest, the result of the region of interest containing only the lip region showed an average recognition rate of 97.36%, which is 3.44% higher than the average recognition rate of 93.92% in the previous study, and in the comparison of interpolation methods, the bilinear interpolation method performed 97.36%, which is 14.65% higher than the nearest neighbor interpolation method and 5.55% higher than the bicubic interpolation method. The code used in this study can be found a https://github.com/haraisi2/Lipreading-Systems.

Correlation Analysis between Damage of Expansion Joints and Response of Deck in RC Slab Bridges (RC 슬래브교의 신축이음 손상과 바닥판 응답과의 상관관계 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Park, Ki-Tae;Jung, Kyu-San;Kim, Yu-Hee;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.245-253
    • /
    • 2021
  • RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.

Verification of accuracy detection of the cows estrus using biometric information measuring device (생체정보 측정장치를 활용한 젖소 발정탐지의 정확도 검증)

  • Yang, Ka-Young;Woo, Sae-Mee;Kwon, Kyeong-Seok;Choi, Hee-Chul;Jeon, Jung-Hwan;Lee, Jun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.652-657
    • /
    • 2018
  • Breeding control in a farm is a very important factor affecting milk productivity. Breeding management is important for the early detection of estrus, and reliable, automatic, more accurate, and faster monitoring of the timing of dairy cows is essential for farmers. This study measured the accuracy of estrus using the estrus indications, changes in activities, rumination activities, ruminal temperature, and pH. The biomedical information device S1 used in this study provided an estrus notice using the rumen temperature, pH, cow activities, and number of drinking estimations, which were inserted in the rumen through the oral route. The S2 device was used in the estrus notice for the rumen activities and cow activities. The data collected on the instrument were collected at intervals of 2 hours per day at the reference days (RD: -7~-3, +7~+ 3) +2), 7 days before insemination, and 7 days after insemination. The activities of the S1 device used in this paper increased with increasing number of insemination days (-1: $12.5{\pm}1.03/day$; 0: $12.9{\pm}1.73/day$) compared to the reference day (RD: $10.2{\pm}1.0/day$). The activities of the S2 device was also found to increase from the reference day to the insemination day (0: $63.0{\pm}3.66$) compared to the reference day (RD: $40.3{\pm}2.68$). The number of daily drinks in S1 decreased from the reference day (RD: $5.9{\pm}0.89/day$) to before the insemination day (-2: $5.6{\pm}0.98$; -1: $5.7{\pm}0.96$); +2: $6.0{\pm}0.73$). The number of daily drinks on the insemination day (0: $6.3{\pm}0.86$; +2: $6.0{\pm}0.73$) was similar to the reference day. The number of daily rumination in S2 decreased from the reference day (RD: $493.8{\pm}10.92$) to the insemination day (-1: $390.2{\pm}13.36$; 0: $354.1{\pm}16.71$).

Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images (항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류)

  • LEE, Jin-Duk;BANG, Kon-Joon;KIM, Hyun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • Image data collected by an airborne hyperspectral camera system have a great usability in coastal line mapping, detection of facilities composed of specific materials, detailed land use analysis, change monitoring and so forh in a complex coastal area because the system provides almost complete spectral and spatial information for each image pixel of tens to hundreds of spectral bands. A few approaches after classifying by a few approaches based on SAM(Spectral Angle Mapper) supervised classification were applied for extracting optimal land cover information from hyperspectral images acquired by CASI-1500 airborne hyperspectral camera on the object of a coastal area which includes both land and sea water areas. We applied three different approaches, that is to say firstly the classification approach of combined land and sea areas, secondly the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas, and thirdly the land area-only classification approach using atmospheric correction images and compared classification results and accuracies. Land cover classification was conducted respectively by selecting not only four band images with the same wavelength range as IKONOS, QuickBird, KOMPSAT and GeoEye satelllite images but also eight band images with the same wavelength range as WorldView-2 from 48 band hyperspectral images and then compared with the classification result conducted with all of 48 band images. As a result, the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas is more effective than classification approach of combined land and sea areas. It is showed the bigger the number of bands, the higher accuracy and reliability in the reclassification approach referred above. The results of higher spectral resolution showed asphalt or concrete roads was able to be classified more accurately.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction (Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Seo, Jinny
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.73-95
    • /
    • 2021
  • This study uses Node2vec graph embedding method and Light GBM link prediction to explore undeveloped export candidate countries in Korea's food and beverage industry. Node2vec is the method that improves the limit of the structural equivalence representation of the network, which is known to be relatively weak compared to the existing link prediction method based on the number of common neighbors of the network. Therefore, the method is known to show excellent performance in both community detection and structural equivalence of the network. The vector value obtained by embedding the network in this way operates under the condition of a constant length from an arbitrarily designated starting point node. Therefore, it has the advantage that it is easy to apply the sequence of nodes as an input value to the model for downstream tasks such as Logistic Regression, Support Vector Machine, and Random Forest. Based on these features of the Node2vec graph embedding method, this study applied the above method to the international trade information of the Korean food and beverage industry. Through this, we intend to contribute to creating the effect of extensive margin diversification in Korea in the global value chain relationship of the industry. The optimal predictive model derived from the results of this study recorded a precision of 0.95 and a recall of 0.79, and an F1 score of 0.86, showing excellent performance. This performance was shown to be superior to that of the binary classifier based on Logistic Regression set as the baseline model. In the baseline model, a precision of 0.95 and a recall of 0.73 were recorded, and an F1 score of 0.83 was recorded. In addition, the light GBM-based optimal prediction model derived from this study showed superior performance than the link prediction model of previous studies, which is set as a benchmarking model in this study. The predictive model of the previous study recorded only a recall rate of 0.75, but the proposed model of this study showed better performance which recall rate is 0.79. The difference in the performance of the prediction results between benchmarking model and this study model is due to the model learning strategy. In this study, groups were classified by the trade value scale, and prediction models were trained differently for these groups. Specific methods are (1) a method of randomly masking and learning a model for all trades without setting specific conditions for trade value, (2) arbitrarily masking a part of the trades with an average trade value or higher and using the model method, and (3) a method of arbitrarily masking some of the trades with the top 25% or higher trade value and learning the model. As a result of the experiment, it was confirmed that the performance of the model trained by randomly masking some of the trades with the above-average trade value in this method was the best and appeared stably. It was found that most of the results of potential export candidates for Korea derived through the above model appeared appropriate through additional investigation. Combining the above, this study could suggest the practical utility of the link prediction method applying Node2vec and Light GBM. In addition, useful implications could be derived for weight update strategies that can perform better link prediction while training the model. On the other hand, this study also has policy utility because it is applied to trade transactions that have not been performed much in the research related to link prediction based on graph embedding. The results of this study support a rapid response to changes in the global value chain such as the recent US-China trade conflict or Japan's export regulations, and I think that it has sufficient usefulness as a tool for policy decision-making.