This paper introduces core techniques on ship detection and tracking based on a compact HF radar platform which is necessary to establish a wide-area surveillance network. Currently, most HF radar sites are primarily optimized for observing sea surface radial velocities and bearings. Therefore, many ship detection systems are vulnerable to error sources such as environmental noise and clutter when they are applied to these practical surface current observation purpose systems. In addition, due to Korea's geographical features, only compact HF radars which generates non-uniform antenna response and has no information on target information are applicable. The ship detection and tracking techniques discussed in this paper considers these practical conditions and were evaluated by real data collected from the Yellow Sea, Korea. The proposed method is composed of two parts. In the first part, ship detection, a constant false alarm rate based detector was applied and was enhanced by a PCA subspace decomposition method which reduces noise. To merge multiple detections originated from a single target due to the Doppler effect during long CPIs, a clustering method was applied. Finally, data association framework eliminates false detections by considering ship maneuvering over time. According to evaluation results, it is claimed that the proposed method produces satisfactory results within certain ranges.
최근 고 해상도 위성영상정보의 민간 활용에 대한 수요가 증가하면서 기존의 공간 정보를 다루는 여러 응용분야에서 이에 관련된 많은 연구를 하고 있다. 도시교통 환경 분석을 위하여 위성영상정보를 처리하는 과정에 있어서 도로, 건물, 기타 선 구조와 같은 지형지물을 분석하는 과정은 사용자에 따라 주관적일 수 있다. 이러한 배경에서 수학적 그레이 레벨 모폴로지는 하나의 효과적인 접근으로 간주된다. 본 연구에서 지형지물 추출을 위해 윈도우 운영체제에서 실행되는 실질적인 응용 프로그램을 구현하였다. 이 프로그램에서 주요한 지형지물은 그레이 레벨 영상을 이용하여 개방(opening), 폐쇄(closing), 침식(erosion), 팽창(dilation)의 순차적 처리를 통하여 자동적으로 추출된다. 결과적으로, GDPA, 허프 변환 또는 다른 알고리듬들과 비교시 하나의 이점이 된다. 모폴로지 처리와 같이 본 프로그램은 그레이 레벨 값의 범위에 기반하여 지형지물을 추출을 위한 density slicing 기능 또는 주어진 경계치 보다 작은 화소 군집을 제거하는 처리인 'sieve filtering'을 제공한다. 이러한 기능들은 형태학적으로 처리된 결과를 증대하고 지형지물 종류들을 분리하는데 유용하다. 또한 배경의 제거, 잡음 탐지, 도시 환경 원격 탐사에서의 지형지물 특성화에 기여한다. 본 프로그램을 이용하는데 있어서 IKONOS 위성영상을 이용하여 시험 구현하였다. 결과, 다중 경계치 또는 steve filtering을 이용한 그레이 레벨 모폴로지 처리는 복잡한 지형지물과 많은 데이터로 구성된 고해상도 영상 내의 주어진 대상에서 자동적인 처리와 사용자 정의 sieve filtering으로 인한 효과적인 지형지물 추출 방법으로 간주 된다. 시안을 작성 표준화를 위한 첫 단계 시도를 소개하였다.분석 결과는 문장, 그림 및 도표, 장 끝의 질문, 학생의 학습 활동 수 등이 $0.4{\sim}1.5$ 사이의 값으로 학생 참여를 적절히 유도하는 발견 지향적 인 것으로 조사되었다. 그러나 장의 요약은 본문 내용을 반복하는 내용으로 구성되었다. 이와 같이 공통과학 과목은 새로운 현대 사회에 부응하는 교과 목표와 체계를 지향하고 있지만 아직도 통합과학으로서의 내용과 체계를 완전히 갖추고 있지 못할 뿐만 아니라 현재 사용되고 있는 7종의 교과서가 교육 목표를 충분히 반영하지 못하고 있다. 따라서 교사의 역할이 더욱더 중요하게 되었다.괴리가 작아진다. 이 결과에 따르면 위탁증거금의 징수는 그 제도의 취지에 부합되고 있다. 다만 제도운용상의 이유이거나 혹은 우리나라 주식시장의 투자자들이 비합리적인 투자형태를 보임에 따라 그 정책적 효과는 때로 역기능적인 결과로 초래하였다. 그럼에도 불구하고 이 연구결과를 통하여 최소한 주식시장(株式市場)에서 위탁증거금제도는 그 제도적 의의가 여전히 있다는 사실이 확인되었다. 또한 우리나라 주식시장에서 통상 과열투기 행위가 빈번히 일어나 주식시장을 교란시킴으로써 건전한 투자풍토조성에 저해된다는 저간의 우려가 매우 커왔으나 표본 기간동안에 대하여 실증분석을 한 결과 주식시장 전체적으로 볼 때 주가변동율(株價變動率), 특히 초과주가변동율(超過株價變動率)에 미치는 영향이 그다지 심각한 정도는 아니었으며 오히려 우리나라의 주식시장은 미국시장에 비해 주가가 비교적 안정적인 수준을 유지해 왔다고 볼 수 있다.36.4%)와 외식을 선호(29.1%)${\lrcorner}$ 하기 때문에 패스트푸드를 이용하게 된 것으로 응답 하였으며,
This paper proposes algorithm to reduce the computing time in a neural network that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. Object Detection can be defined as follows : Given image sequence, which can forom a digitalized image, the goal of object detection is to determine whether or not there is any object in the image, and if present, returns its location, direction, size, and so on. But object in an given image is considerably difficult because location, size, light conditions, obstacle and so on change the overall appearance of objects, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact object detection which overcomes some restrictions by using neural network. Proposed system can be object detection irrelevant to obstacle, background and pose rapidly. And neural network calculation time is decreased by reducing input vector size of neural network. Principle Component Analysis can reduce the dimension of data. In the video input in real time from a CCTV was experimented and in case of color segment, the result shows different success rate depending on camera settings. Experimental results show proposed method attains 30% higher recognition performance than the conventional method.
Park, Yong-Lak;Cho, Jum Rae;Choi, Kyung-Hee;Kim, Hyun Ran;Kim, Ji Won;Kim, Se Jin;Lee, Dong-Hyuk;Park, Chang-Gyu;Cho, Young Sik
Korean journal of applied entomology
/
v.60
no.1
/
pp.135-143
/
2021
Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, manned and unmanned aircraft, spectral sensors, information systems, and autonomous field equipment, have been used to detect pests and apply control measures site-specifically. Despite the availability of aerospace and geospatial technologies, along with big-data-driven artificial intelligence, applications of such technologies to apple IPM have not been realized yet. Using a case study conducted at the Korea Apple Research Institute, this article discusses the advances and limitations of current aerospace and geospatial technologies that can be used for improving apple IPM.
The Transactions of the Korea Information Processing Society
/
v.13
no.4
/
pp.189-198
/
2024
Lipreading is one of the important parts of speech recognition, and several studies have been conducted to improve the performance of lipreading in lipreading systems for speech recognition. Recent studies have used method to modify the model architecture of lipreading system to improve recognition performance. Unlike previous research that improve recognition performance by modifying model architecture, we aim to improve recognition performance without any change in model architecture. In order to improve the recognition performance without modifying the model architecture, we refer to the cues used in human lipreading and set other regions such as chin and cheeks as regions of interest along with the lip region, which is the existing region of interest of lipreading systems, and compare the recognition rate of each region of interest to propose the highest performing region of interest In addition, assuming that the difference in normalization results caused by the difference in interpolation method during the process of normalizing the size of the region of interest affects the recognition performance, we interpolate the same region of interest using nearest neighbor interpolation, bilinear interpolation, and bicubic interpolation, and compare the recognition rate of each interpolation method to propose the best performing interpolation method. Each region of interest was detected by training an object detection neural network, and dynamic time warping templates were generated by normalizing each region of interest, extracting and combining features, and mapping the dimensionality reduction of the combined features into a low-dimensional space. The recognition rate was evaluated by comparing the distance between the generated dynamic time warping templates and the data mapped to the low-dimensional space. In the comparison of regions of interest, the result of the region of interest containing only the lip region showed an average recognition rate of 97.36%, which is 3.44% higher than the average recognition rate of 93.92% in the previous study, and in the comparison of interpolation methods, the bilinear interpolation method performed 97.36%, which is 14.65% higher than the nearest neighbor interpolation method and 5.55% higher than the bicubic interpolation method. The code used in this study can be found a https://github.com/haraisi2/Lipreading-Systems.
Journal of the Korea institute for structural maintenance and inspection
/
v.25
no.6
/
pp.245-253
/
2021
RC slab bridges account for the largest portion of deteriorated bridges in Korea. However, most RC slabs are not included in the first and second classes of bridges, which are subject to bridge safety management and maintenance. The highest damaged components in highway bridges are the subsidiary facilities including expansion joints and bearings. In particular, leakage through expansion joints causes deterioration and cracks of concrete and exposure of reinforced bars. Therefore, this study analyzed the effect of adhesion damage at expansion joints on the response of the deck in RC slab bridges. When the spacing between the expansion joints at both ends was closely adhered, cracks occurred in the concrete at both ends of the deck due to the resistance rigidity at the expansion joints. Based on the response results, the correlation analysis between displacements in the longitudinal direction of the expansion joint and concrete stress at both ends of the deck for each damage scenario was performed to investigate the effect of the occurrence of damage on the bridge behavior. When expansion joint devices at both sides were damaged, the correlation between displacement and stress showed a low correlation of 0.18 when the vehicles proceeded along all the lanes. Compared with those in the intact state, the deflections of the deck in the damaged case at both sides showed a low correlation of 0.34 to 0.53 while the vehicle passed and 0.17 to 0.43 after the vehicle passed. This means that the occurrence of cracks in the ends of concrete changed the behavior of the deck. Therefore, data-deriven damage detection could be developed to manage the damage to expansion joints that cause damage and deterioration of the deck.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.6
/
pp.652-657
/
2018
Breeding control in a farm is a very important factor affecting milk productivity. Breeding management is important for the early detection of estrus, and reliable, automatic, more accurate, and faster monitoring of the timing of dairy cows is essential for farmers. This study measured the accuracy of estrus using the estrus indications, changes in activities, rumination activities, ruminal temperature, and pH. The biomedical information device S1 used in this study provided an estrus notice using the rumen temperature, pH, cow activities, and number of drinking estimations, which were inserted in the rumen through the oral route. The S2 device was used in the estrus notice for the rumen activities and cow activities. The data collected on the instrument were collected at intervals of 2 hours per day at the reference days (RD: -7~-3, +7~+ 3) +2), 7 days before insemination, and 7 days after insemination. The activities of the S1 device used in this paper increased with increasing number of insemination days (-1: $12.5{\pm}1.03/day$; 0: $12.9{\pm}1.73/day$) compared to the reference day (RD: $10.2{\pm}1.0/day$). The activities of the S2 device was also found to increase from the reference day to the insemination day (0: $63.0{\pm}3.66$) compared to the reference day (RD: $40.3{\pm}2.68$). The number of daily drinks in S1 decreased from the reference day (RD: $5.9{\pm}0.89/day$) to before the insemination day (-2: $5.6{\pm}0.98$; -1: $5.7{\pm}0.96$); +2: $6.0{\pm}0.73$). The number of daily drinks on the insemination day (0: $6.3{\pm}0.86$; +2: $6.0{\pm}0.73$) was similar to the reference day. The number of daily rumination in S2 decreased from the reference day (RD: $493.8{\pm}10.92$) to the insemination day (-1: $390.2{\pm}13.36$; 0: $354.1{\pm}16.71$).
Journal of the Korean Association of Geographic Information Studies
/
v.21
no.1
/
pp.35-45
/
2018
Image data collected by an airborne hyperspectral camera system have a great usability in coastal line mapping, detection of facilities composed of specific materials, detailed land use analysis, change monitoring and so forh in a complex coastal area because the system provides almost complete spectral and spatial information for each image pixel of tens to hundreds of spectral bands. A few approaches after classifying by a few approaches based on SAM(Spectral Angle Mapper) supervised classification were applied for extracting optimal land cover information from hyperspectral images acquired by CASI-1500 airborne hyperspectral camera on the object of a coastal area which includes both land and sea water areas. We applied three different approaches, that is to say firstly the classification approach of combined land and sea areas, secondly the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas, and thirdly the land area-only classification approach using atmospheric correction images and compared classification results and accuracies. Land cover classification was conducted respectively by selecting not only four band images with the same wavelength range as IKONOS, QuickBird, KOMPSAT and GeoEye satelllite images but also eight band images with the same wavelength range as WorldView-2 from 48 band hyperspectral images and then compared with the classification result conducted with all of 48 band images. As a result, the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas is more effective than classification approach of combined land and sea areas. It is showed the bigger the number of bands, the higher accuracy and reliability in the reclassification approach referred above. The results of higher spectral resolution showed asphalt or concrete roads was able to be classified more accurately.
Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.
This study uses Node2vec graph embedding method and Light GBM link prediction to explore undeveloped export candidate countries in Korea's food and beverage industry. Node2vec is the method that improves the limit of the structural equivalence representation of the network, which is known to be relatively weak compared to the existing link prediction method based on the number of common neighbors of the network. Therefore, the method is known to show excellent performance in both community detection and structural equivalence of the network. The vector value obtained by embedding the network in this way operates under the condition of a constant length from an arbitrarily designated starting point node. Therefore, it has the advantage that it is easy to apply the sequence of nodes as an input value to the model for downstream tasks such as Logistic Regression, Support Vector Machine, and Random Forest. Based on these features of the Node2vec graph embedding method, this study applied the above method to the international trade information of the Korean food and beverage industry. Through this, we intend to contribute to creating the effect of extensive margin diversification in Korea in the global value chain relationship of the industry. The optimal predictive model derived from the results of this study recorded a precision of 0.95 and a recall of 0.79, and an F1 score of 0.86, showing excellent performance. This performance was shown to be superior to that of the binary classifier based on Logistic Regression set as the baseline model. In the baseline model, a precision of 0.95 and a recall of 0.73 were recorded, and an F1 score of 0.83 was recorded. In addition, the light GBM-based optimal prediction model derived from this study showed superior performance than the link prediction model of previous studies, which is set as a benchmarking model in this study. The predictive model of the previous study recorded only a recall rate of 0.75, but the proposed model of this study showed better performance which recall rate is 0.79. The difference in the performance of the prediction results between benchmarking model and this study model is due to the model learning strategy. In this study, groups were classified by the trade value scale, and prediction models were trained differently for these groups. Specific methods are (1) a method of randomly masking and learning a model for all trades without setting specific conditions for trade value, (2) arbitrarily masking a part of the trades with an average trade value or higher and using the model method, and (3) a method of arbitrarily masking some of the trades with the top 25% or higher trade value and learning the model. As a result of the experiment, it was confirmed that the performance of the model trained by randomly masking some of the trades with the above-average trade value in this method was the best and appeared stably. It was found that most of the results of potential export candidates for Korea derived through the above model appeared appropriate through additional investigation. Combining the above, this study could suggest the practical utility of the link prediction method applying Node2vec and Light GBM. In addition, useful implications could be derived for weight update strategies that can perform better link prediction while training the model. On the other hand, this study also has policy utility because it is applied to trade transactions that have not been performed much in the research related to link prediction based on graph embedding. The results of this study support a rapid response to changes in the global value chain such as the recent US-China trade conflict or Japan's export regulations, and I think that it has sufficient usefulness as a tool for policy decision-making.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.