• 제목/요약/키워드: 데이터 모델 평가

검색결과 2,530건 처리시간 0.04초

계층별 모델 역추론 공격 (Layer-wise Model Inversion Attack)

  • 권현호;김한준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.69-72
    • /
    • 2024
  • 모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.

ART 에어로졸 재부유실험 데이터를 이용한 재부유모델의 평가

  • 박재우
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.790-797
    • /
    • 1997
  • 에어로졸 재부유현상은 중대사고 방사선원항 평가에서 그 중요성이 인식되고 있으나 거의 모든 사고해석 코드에서 다루어지지 않고 있다. 따라서 본 연구는 지금까지 제시된 몇가지 유형의 에어로졸 재부유모델을 ORNL에서 실시된 에어로졸 재부유실험 데이터를 이용하여 정확도와 중대사고 해석코드에 적용가능성을 분석하였다. 본 연구에서 고려한 모델은 시간의 멱승함수와 지수함수형으로 표시된 모델들이다. 본 연구에서 분석한 바에 의하면 두 유형에 속하는 대부분의 모델이 재부유량뿐만 아니라 재부유율을 계산하는 데서 실험데이터와 상당한 편차를 보여 현재의 형태로 중대사고 해석 코드에 접목하는 데는 문제가 있는 것으로 분석되었다. 그러나 보다 광범위한 실험데이터를 통한 보완이 이루어진다면 모델식 자체의 간편함으로 접목이 용이할 것이다.

  • PDF

군 폐쇄망 환경에서의 모의 네트워크 데이터 셋 평가 방법 연구 (A study on evaluation method of NIDS datasets in closed military network)

  • 박용빈;신성욱;이인섭
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.121-130
    • /
    • 2020
  • 이 논문은 Generative Adversarial Network (GAN) 을 이용하여 증진된 이미지 데이터를 평가방식인 Inception Score (IS) 와 Frechet Inception Distance (FID) 계산시 inceptionV3 모델을 활용 하는 방식을 응용하여, 군 폐쇄망 네트워크 데이터를 이미지 형태로 평가하는 방법을 제안한다. 기존 존재하는 이미지 분류 모델들에 레이어를 추가하여 IncetptionV3 모델을 대체하고, 네트워크 데이터를 이미지로 변환 및 학습 하는 방법에 변화를 주어 다양한 시뮬레이션을 진행하였다. 실험 결과, atan을 이용해 8 * 8 이미지로 변환한 데이터에 대해 1개의 덴스 레이어 (Dense Layer)를 추가한 Densenet121를 학습시킨 모델이 네트워크 데이터셋 평가 모델로서 가장 적합하다는 결과를 도출하였다.

구조실험정보를 위한 데이터 모델의 구성 및 사용성 평가 (Evaluation of Organization and Use of Data Model for Structural Experiment Information)

  • 이창호
    • 한국전산구조공학회논문집
    • /
    • 제28권6호
    • /
    • pp.579-588
    • /
    • 2015
  • 구조실험을 위한 데이터 모델은 구조실험에 관련된 실험정보를 정형화하여 표현하므로 데이터 저장소를 개발하는데 이용할 수 있다. 데이터 모델은 특히 대규모의 구조실험정보 또는 일반적인 다양한 실험정보를 위한 데이터 저장소에 효과적인데 예를 들면 NEES에서 개발한 NEEShub Project Warehouse가 있다. 본 논문은 데이터 모델의 구성과 사용을 평가하기 위한 평가요소를 제안하고 있다. 클래스의 속성이 값을 갖는지를 의미하는 AVE(attribute value existence)란 용어를 도입하여 속성의 사용성에 대한 Attribute AVE, 클래스의 사용성에 대한 Class AVE, 하위레벨에 있는 클래스를 포함하는 Class Level AVE, 하나의 프로젝트의 모든 클래스를 포함하는 Project AVE, 모든 프로젝트를 포함하는 데이터 모델에 대한 Data Model AVE를 정의하였다. 이러한 평가요소들을 NEES 데이터 모델의 프로젝트들에 적용하였는데 데이터 모델내의 클래스와 객체에 대한 사용성을 수치적으로 기술하여 평가하는 것이 가능하였다.

생성모델의 시각적 최적화를 위한 학습데이터 제작기법 (Learning data production technique for visual optimization of generative models)

  • 조형래;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.13-14
    • /
    • 2021
  • 본 논문은 생성모델의 학습데이터 제작기법에 대한 실험 및 결과와 향후 관련 연구의 방향을 기술한다. GAN으로 대표되는 생성모델이 아티스트에게 얼마만큼의 만족도와 영감을 주는지를 비교 실험 및 평가하기 위해서는 정제된 학습데이터가 필요하다. 하지만 현실적으로 아티스트의 작품은 데이터 세트를 만들기에는 그 수가 적고 인공지능이 학습하기에도 정제되어있지 않다. 2차 가공작업을 통하여 아티스트의 원본 작업과 유사한 데이터 세트의 구축은 생성모델의 성능향상을 위해 매우 중요하다. 연구의 결과 생성모델이 표현하기 어려운 스타일의 작가 작품을 선정한 뒤 최적의 학습데이터를 만들기 위한 다양한 실험과 기법을 통해 구축한 데이터 세트를 생성모델 알고리즘에 적용하고 실험을 통해 창작자의 작품제작 의도인 작가 진술에 최대한 유사한 이미지의 생성과 더 나아가 작가가 생각하지 못했던 창조적 모방의 결과물을 도출하였고 작가평가를 통해 높은 만족도를 얻었다.

  • PDF

거대언어모델에 대한 원자력 안전조치 용어 적용 가능성 평가 (A Training Feasibility Evaluation of Nuclear Safeguards Terms for the Large Language Model (LLM))

  • 윤성호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.479-480
    • /
    • 2024
  • 본 논문에서는 원자력 안전조치 용어를 미세조정(fine tuning) 알고리즘을 활용해 추가 학습한 공개 거대 언어모델(Large Language Model, LLM)이 안전조치 관련 질문에 대해 답변한 결과를 정성적으로 평가하였다. 평가 결과, 학습 데이터 범위 내 질문에 대해 학습 모델은 기반 모델 답변에 추가 학습 데이터를 활용한 낮은 수준의 추론을 수행한 답변을 출력하였다. 평가 결과를 통해 추가 학습 개선 방향을 도출하였으며 저비용 전문 분야 언어 모델 구축에 활용할 수 있을 것으로 보인다.

  • PDF

데이터 불균형 기법의 부작용 완화를 위한 어텐션 기반 앙상블 (Attention-Based Ensemble for Mitigating Side Effects of Data Imbalance Method)

  • 박요한;최용석;;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.546-551
    • /
    • 2023
  • 일반적으로 딥러닝 모델은 모든 라벨에 데이터 수가 균형을 이룰 때 가장 좋은 성능을 보인다. 그러나 현실에서는 특정라벨에 대한 데이터가 부족한 경우가 많으며 이로 인해 불균형 데이터 문제가 발생한다. 이에 대한 해결책으로 오버샘플링과 가중치 손실과 같은 데이터 불균형 기법이 연구되었지만 이러한 기법들은 데이터가 적은 라벨의 성능을 개선하는 동시에 데이터가 많은 라벨의 성능을 저하시키는 부작용을 가지고 있다. 본 논문에서는 이 문제를 완화시키고자 어텐션 기반의 앙상블 기법을 제안한다. 어텐션 기반의 앙상블은 데이터 불균형 기법을 적용한 모델과 적용하지 않은 모델의 출력 값을 가중 평균하여 최종 예측을 수행한다. 이때 가중치는 어텐션 메커니즘을 통해 동적으로 조절된다. 그로므로 어텐션 기반의 앙상블 모델은 입력 데이터 특성에 따라 가중치를 조절할 수가 있다. 실험은 에세이 자동 평가 데이터를 대상으로 수행하였다. 실험 결과로는 제안한 모델이 데이터 불균형 기법의 부작용을 완화하고 성능이 개선되었다.

  • PDF

데이터 품질 분석 모델(DQnA)을 이용한 융합적·적응적 품질 분석에 관한 연구 (A study on Convergent & Adaptive Quality Analysis using DQnA model)

  • 김용원
    • 한국융합학회논문지
    • /
    • 제5권4호
    • /
    • pp.21-25
    • /
    • 2014
  • 현재 대부분의 기업들이 정보기술을 기반으로 정보 시스템을 이용한 데이터 분석 기법을 활용하고 있다. 이러한 데이터 분석은 기업의 다양한 의사결정에 영향을 미치는 데이터의 품질 평가에 주목하고 있다. 이는 데이터 품질 평가가 기업의 효과적인 운영뿐만 아니라 여러 부분에서 중요한 역할을 하기 때문이다. 본 연구에서는 현재 다양하게 연구되고 있는 데이터 품질 평가 모델에 관하여 기술하고, 이를 기반으로 데이터 품질 분석에 활용되고 있는 융합적이며, 적응적 모델인 DQnA 모델에 관하여 서술하고, 이를 활용한 품질 분석 방법에 관하여 논의하고자 한다.

게임 그래픽 데이터의 품질평가지표 개발 프로세스 (The Development Process of Quality Evaluation Indicators for Game Graphical Data)

  • 윤선정
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.113-114
    • /
    • 2012
  • 게임이 기획, 그래픽, 프로그램의 복합적 기능을 가진 콘텐츠이지만 특별히 수준 높은 그래픽 데이터는 이용자의 만족도, 몰입 등에 긍정적인 영향을 미치는 중요한 영역이다. 그러나 아직 국내외에 게임 그래픽 데이터의 품질을 객관적으로 평가할 수 있는 기준이 마련되어 있지 않다. 이에 따라 본 논문에서는 게임 그래픽 데이터의 품질 평가를 위한 지표를 개발하는 프로세스를 제안한다. 제안된 프로세스는 그래픽 데이터의 품질 평가 영역 추출을 위한 방법과 세부 평가 지표 마련을 위한 평가 항목 추출방법들로 구성된다. 본 연구 결과는 고품질 게임 개발을 위한 품질평가 지표 개발에 적용될 것이며 관련 분야의 품질평가 모델 개발의 참조 모델이 될 것이다. 향후 본 연구는 국내외 게임 그래픽 데이터의 품질평가 표준안 설계 개발로 진행될 예정이다.

  • PDF

Verification of the Suitability of Fine Dust and Air Quality Management Systems Based on Artificial Intelligence Evaluation Models

  • Heungsup Sim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.165-170
    • /
    • 2024
  • 본 연구는 인공지능 평가 모델을 활용하여 양주시의 대기질 관리 시스템의 정확성을 검증하는 데 목적이 있다. 환경부 미세먼지 공공 데이터와 양주시 대기질 관리 시스템 데이터를 비교하여 미세먼지 데이터의 정합성과 신뢰성을 평가하였다, 이를 위해 데이터의 완전성, 유일성, 유효성, 일관성, 정확성, 무결성을 분석하였다. 데이터의 정합성을 비교하기 위해 탐색적 통계 분석을 활용하였다. 분석 결과, AI 기반 데이터 품질 지수 평가 결과, 두 데이터 세트 간에 통계적으로 유의미한 차이가 없음을 확인하였다. AI 기반 알고리즘 중 랜덤 포레스트 모델이 가장 높은 예측 정확도를 보였으며, ROC 커브와 AUC를 통해 예측 성능을 평가하였다. 특히, 랜덤 포레스트 모델은 대기질 관리 시스템의 최적화에 유용한 모델로 확인되었으며, 미세먼지 데이터의 신뢰성과 적합성을 AI 기반 모델 성능 평가로 활용할 수 있음을 확인하였다.