• Title/Summary/Keyword: 데이터 검색 알고리즘

Search Result 514, Processing Time 0.035 seconds

Image Feature Extraction using Genetic Algorithm (유전자 알고리즘을 이용한 영상 특징 추출)

  • Park, Sang-Sung;A, Dong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2006
  • Multimedia data is increasing rapidly by development of computer Information technology. Specially, quick and accurate processing of image data is required in image retrieval field. But it is difficult to guarantee both quickness and accuracy. This article suggests the algorithm that extracts representative features of image using genetic algorithm to solve this problem. This algorithm guarantees quickness and accuracy of retrieval by extracting representative features of image. We used color and texture as feature of image. Experiment shows that feature extracting method that is proposed is more accurate than existing study. So this study establishes propriety of method that is proposed.

  • PDF

Grid-based Similar Trajectory Search for Moving Objects on Road Network (공간 네트워크에서 이동 객체를 위한 그리드 기반 유사 궤적 검색)

  • Kim, Young-Chang;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.1
    • /
    • pp.29-40
    • /
    • 2008
  • With the spread of mobile devices and advances in communication techknowledges, the needs of application which uses the movement patterns of moving objects in history trajectory data of moving objects gets Increasing. Especially, to design public transportation route or road network of the new city, we can use the similar patterns in the trajectories of moving objects that move on the spatial network such as road and railway. In this paper, we propose a spatio-temporal similar trajectory search algorithm for moving objects on road network. For this, we define a spatio-temporal similarity measure based on the real road network distance and propose a grid-based index structure for similar trajectory search. Finally, we analyze the performance of the proposed similar trajectory search algorithm in order to show its efficiency.

  • PDF

Hybrid Video Information System Supporting Content-based Retrieval and Similarity Retrieval (비디오의 의미검색과 유사성검색을 위한 통합비디오정보시스템)

  • Yun, Mi-Hui;Yun, Yong-Ik;Kim, Gyo-Jeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2031-2041
    • /
    • 1999
  • In this paper, we present the HVIS (Hybrid Video Information System) which bolsters up meaning retrieval of all the various users by integrating feature-based retrieval and annotation-based retrieval of unformatted formed and massive video data. HVIS divides a set of video into video document, sequence, scene and object to model the metadata and suggests the Two layered Hybrid Object-oriented Metadata Model(THOMM) which is composed of raw-data layer for physical video stream, metadata layer to support annotation-based retrieval, content-based retrieval, and similarity retrieval. Grounded on this model, we presents the video query language which make the annotation-based query, content-based query and similar query possible and Video Query Processor to process the query and query processing algorithm. Specially, We present the similarity expression to appear degree of similarity which considers interesting of user. The proposed system is implemented with Visual C++, ActiveX and ORACLE.

  • PDF

Similar Patent Search Service System using Latent Dirichlet Allocation (잠재 의미 분석을 적용한 유사 특허 검색 서비스 시스템)

  • Lim, HyunKeun;Kim, Jaeyoon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1049-1054
    • /
    • 2018
  • Keyword searching used in the past as a method of finding similar patents, and automated classification by machine learning is using in recently. Keyword searching is a method of analyzing data that is formalized through data refinement. While the accuracy for short text is high, long one consisted of several words like as document that is not able to analyze the meaning contained in sentences. In semantic analysis level, the method of automatic classification is used to classify sentences composed of several words by unstructured data analysis. There was an attempt to find similar documents by combining the two methods. However, it have a problem in the algorithm w the methods of analysis are different ways to use simultaneous unstructured data and regular data. In this paper, we study the method of extracting keywords implied in the document and using the LDA(Latent Semantic Analysis) method to classify documents efficiently without human intervention and finding similar patents.

A Hybrid Search Method of A* and Dijkstra Algorithms to Find Minimal Path Lengths for Navigation Route Planning (내비게이션 경로설정에서 최단거리경로 탐색을 위한 A*와 Dijkstra 알고리즘의 하이브리드 검색법)

  • Lee, Yong-Hu;Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.109-117
    • /
    • 2014
  • In navigation route planning systems using A* algorithms, the cardinality of an Open list, which is a list of candidate nodes through which a terminal node can be accessed, increases as the path length increases. In this paper, a method of alternately utilizing the Dijkstra's algorithm and the A* algorithm to reduce the cardinality of the Open list is investigated. In particular, by employing a depth parameter, named Level, the two algorithms are alternately performed depending on the Level's value. Using the hybrid searching approach, the Open list constructed in the Dijkstra's algorithm is transferred into the Open list of the A* algorithm, and consequently, the unconstricted increase of the cardinality of the Open list of the former algorithm can be avoided and controlled appropriately. In addition, an optimal or nearly optimal path similar to the Dijkstra's route, but not available in the A* algorithm, can be found. The experimental results, obtained with synthetic and real-life benchmark data, demonstrate that the computational cost, measured with the number of nodes to be compared, was remarkably reduced compared to the traditional searching algorithms, while maintaining the similar distance to those of the latter algorithms. Here, the values of Level were empirically selected. Thus, a study on finding the optimal Level values, while taking into consideration the actual road conditions remains open.

Finding the Minimum MBRs Embedding K Points (K개의 점 데이터를 포함하는 최소MBR 탐색)

  • Kim, Keonwoo;Kim, Younghoon
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.71-77
    • /
    • 2017
  • There has been a recent spate in the usage of mobile device equipped GPS sensors, such as smart phones. This trend enables the posting of geo-tagged messages (i.e., multimedia messages with GPS locations) on social media such as Twitter and Facebook, and the volume of such spatial data is rapidly growing. However, the relationships between the location and content of messages are not always explicitly shown in such geo-tagged messages. Thus, the need arises to reorganize search results to find the relationship between keywords and the spatial distribution of messages. We find the smallest minimum bounding rectangle (MBR) that embedding k or more points in order to find the most dense rectangle of data, and it can be usefully used in the location search system. In this paper, we suggest efficient algorithms to discover a group of 2-Dimensional spatial data with a close distance, such as MBR. The efficiency of our proposed algorithms with synthetic and real data sets is confirmed experimentally.

An Index Interpolation-based Subsequence Matching Algorithm supporting Normalization Transform in Time-Series Databases (시계열 데이터베이스에서 인덱스 보간법을 기반으로 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘)

  • No, Ung-Gi;Kim, Sang-Uk;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.28 no.2
    • /
    • pp.217-232
    • /
    • 2001
  • 본 논문에서는 시계열 데이터베이스에서 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 정규화 변환을 시계열 데이터 간의 절대적인 유클리드 거리에 관계 없이, 구성하는 값들의 상대적인 변화 추이가 유사한 패턴을 갖는 시계열 데이터를 검색하는 데에 유용하다. 기존의 서브시퀀스 매칭 알고리즘을 확장 없이 정규화 변환 서브시퀀스 매칭에 단순히 응용할 경우, 질의 결과로 반환되어야 할 서부시퀀스를 모두 찾아내지 못하는 착오 기각이 발생한다. 또한, 정규화 변환을 지원하는 기존의 전체 매칭 알고리즘의 경우, 모든 가능한 질의 시퀀스 길이 각각에 대하여 하나씩의 인덱스를 생성하여야 하므로, 저장 공간 및 데이터 시퀀스 삽입/삭제의 부담이 매우 심각하다. 본 논문에서는 인덱스 보간법을 이용하여 문제를 해결한다. 인덱스 보간법은 인덱스가 요구되는 모든 경우 중에서 적당한 간격의 일부에 대해서만 생성된 인덱스를 이용하며, 인덱스가 필요한 모든 경우에 대한 탐색을 수행하는 기법이다. 제안된 알고리즘은 몇 개의 질의 시퀀스 길이에 대해서만 각각 인덱스를 생성한 후, 이를 이용하여 모든 가능한 길이의 질의 시퀀스에 대해서 탐색을 수행한다. 이때, 착오 기각이 발생하지 않음을 증명한다. 제안된 알고리즘은 질의 시에 주어진 질의 시퀀스의 길이에 따라 생성되어 있는 인덱스 중에서 가장 적절한 것을 선택하여 탐색을 수행한다. 이때, 생성되어 있는 인덱스의 개수가 많을수록 탐색 성능이 향상된다. 필요에 따라 인덱스의 개수를 변화함으로써 탐색 성능과 저장 공간 간의 비율을 유연하게 조정할 수 있다. 질의 시퀀스의 길이 256 ~ 512중 다섯 개의 길이에 대해 인덱스를 생성하여 실험한 결과, 탐색 결과 선택률이 $10^{-2}$일 때 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 평균 2.40배, 선택률이 $10^{-5}$일 때 평균 14.6배 개선되었다. 제안된 알고리즘의 탐색 성능은 탐색 결과 선택률이 작아질수록 더욱 향상되므로, 실제 데이터베이스 응용에서의 효용성이 높다고 판단된다.

  • PDF

Recommender system for web search based on NLP to improve user search environment (검색환경 개선을 위한 자연어 처리 기반 맞춤형 추천 검색시스템)

  • Seung, Hyeon-Su;Park, Ji-Yun;Woo, Da-Hyun;Oh, Seung-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1168-1171
    • /
    • 2021
  • 일반적인 검색엔진을 가진 포털 환경에서 정보검색 시 사용자가 원치 않는 수많은 검색결과가 동반되기도 하고 자신의 취향에 맞는 글을 검색하지 않았다는 이유만으로 원하는 정보를 놓치는 상황도 일어난다. 이러한 검색환경의 문제를 개선하기 위해 본 논문에서는 사용자들의 검색환경 개선을 위한 맞춤형 검색결과 정렬, 검색어 추천, 게시글 추천의 추천 시스템을 설계하고 제작한다. 이러한 추천 시스템은 워드 임베딩 모델과 추천 시스템 모델을 포함한다. 기존에 존재하던 워드 임베딩 모델의 성능을 실험을 통해 비교 및 분석하고, 크롤링을 통해 모은 데이터로 성능을 24.98%P 개선하였다. 추천 시스템 모델은 RMSE 비교를 통해 최적이 알고리즘을 제안한다. 해당 기술을 통해 사용자 스스로 자신의 검색환경을 개선할 수 있도록 구현하는 것이 이 시스템의 목표이다.

Feature vector extraction for NCEP weather data clustering (NCEP 일기도 데이터 클러스터링을 위한 특징 벡터 추출)

  • 이기범;이성환;정창성;황치정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.583-585
    • /
    • 2001
  • 방대한 양의 격자점 데이터 및 일기도 관련 데이터를 효율적으로 저장 및 검색 하기위해서는 데이터들의 유형을 찾아 서로 유형이 비슷한 데이터를 하나의 클러스터로 연관지어 놓으면 효율적인 저장과 검색을 할 수 있다. 클러스터링에서 데이터들의 어떤 특징 벡터를 추출하는가가 클러스터링의 결과에 가장 중요한 영향을 끼친다. 본 논문에서는 격자점, 기압값 데이터로부터 일기도의 특징을 표현할 수 있는 벡터로 변환 한반도도 중심의 8방향에 대한 고/저기압의 분포와 동아시아 지역을 24영역으로 나누어 각 영역별로 고/저기압의 분포 정보를 특징벡터로 추출하여 클러스터링하였다. 클러스터팅 알고리즘으로는 unsupervised mode인 SOM(Self Organizing Map) 기법을 사용하였다.

  • PDF

Implementation of PDF417 2-dimensional Barcode Decoder (PDF417 이차원 바코드 디코딩 알고리즘의 구현)

  • 정정구;한희일
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.289-292
    • /
    • 2001
  • 종래에 사용되어 왔던 1차원 바코드가 정보를 포함하고 있는 데이터베이스에 접근하는 데이터 키 역할을 주로 해온 것에 비해, 2차원 바코드는 다량의 데이터를 포함할 수 있고 고밀도의 데이터 표현이 가능하여, 호스트 컴퓨터의 데이터 베이스에 온라인 연결할 필요없이 확인하고자 하는 사람이나 대상물에 대한 정보를 얻을 수 있다. 본 논문에서는 가장 널리 사용되는 2차원 바코드 체계인 PDF417 을 중심으로 디지털 카메라를 통하여 입력한 영상을 이진화하여 시작 심볼 또는 정지 심볼을 검색함으로써 2차원 바코드 영역을 추출한 다음, 추출된 영역으로부터 바코드의 행과 열의 수, 오류수정 정도 등의 헤더정보를 검출하고 이를 바탕으로 코드워드를 추출하는 알고리즘을 제안한다. 얻어진 코드워드는 데이터를 효율적으로 저장하기위해 정보가 숫자인지, ASCII코드인지 혹은 바이트 정보인지에 따라 다른 방식으로 인코딩 되어 있는데, 그에 따른 디코딩 알고리즘을 제안한다.

  • PDF