Synthetic Aperture Sonar is a technique of extending Physically limited length of an array by signal processing to enhance bearing resolution of a system. The previous techniques estimate most or away shapes as linear. so when towed array shapes are distorted. this can create a deviation from actual situation. In this paper. we estimated perturbed away shapes. and compensated distortion by using estimated array shapes and synthesized arrays in aperture domain. As experimental data, we used the one obtained from towed array in neighboring waters of the Korean peninsula. We extended array by compensating differences in time and spatial position between overlapped subarrays by using SAS techniques. In simulation results. we confirmed that the bearing resolution was enhanced.
Kim, Dong-Hui;Moon, Seong-Hyeok;Shin, Young-Chan;Kim, Jong-Hyun
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.587-590
/
2022
본 논문에서는 물리기반 옷감 시뮬레이션에 적합한 소리를 효율적으로 생성하기 위한 데이터 기반 합성 기법을 제안한다. 시뮬레이션에서 소리를 표현하는 방법은 크게 생성과 합성이 있지만, 합성은 실시간 애플리케이션에서 활용이 가능하기 때문에 인터랙티브한 환경에서 자주 활용되고 있다. 하지만, 데이터에 의존하기 때문에 원하는 장면에 부합하는 사운드를 합성하기는 어려우며, 기존 방법은 한 방향으로만 사운드 데이터를 검색하기 때문에 불연속으로 인한 끊김 현상이 발생한다. 본 논문에서는 양방향 사운드 합성 기법을 제시하며, 이를 통해 불연속적으로 합성되는 사운드 결과를 효율적으로 개선될 수 있음을 보여준다.
본 논문은 자동 음소 분할기의 음소 경계 오류를 보상하기 위한 후처리 (Postprocessing)에 관한 연구이다. 이는 현재 음성 합성을 위한 음성/언어학적 연구, 운율 모델링, 합성단위 자동 생성 연구 등에 대량의 음소 단위 분절과 음소 레이블링된 데이터의 필요성에 따른 연구의 일환이다. 특히 수작업에 의한 분절 및 레이블링은 일관성의 유지가 어렵고 긴 시간이 소요되므로 자동 분절 기술이 더욱 중요시 되고 있다. 따라서, 본 논문은 자동 분절 경계의 오류 범위를 줄일 수 있는 후처리기를 제안하여 자동 분절 결과를 직접 합성 단위로 사용할 수 있고 대량의 합성용 운율 데이터 베이스 구축에 유용함을 기술한다. 제안된 후처리기는 수작업으로 조정된 데이터의 특징 벡터를 다층 신경회로망 (MLP:Multi-layer perceptron)을 통해 학습을 한 후, ETRI(Electronics and Telecommunication Research Institute)에서 개발된 음성 언어 번역 시스템을 이용한 자동 분절 결과와 후처리기인 MLP를 이용하여 새로운 음소 경계를 추출한다. 고립단어로 발성된 합성 데이터베이스에서 후처리기로 보정된 분절 결과는 음성 언어 번역 시스템의 분할율보 다 약 25%의 향상된 성능을 보였으며, 절대 오류(|Hand label position-Auto label position |)는 약 39%가 향상되었다. 이는 MLP를 이용한 후처리기로 자동 분절 오류의 범위를 줄 일 수 있고, 대량의 합성용 운율 데이터 베이스 구축 및 합성 단위의 자동생성에 이용될 수 있음을 보이는 것이다.
Various research and development on Synthetic Aperture Sonar technique is under way to enhance bearing resolution of a SONAR system. In this paper, we estimated perturbed array shapes, and compensated distortion by using estimated away shapes and synthesized arrays in aperture domain such as an ETAM technique. As experimental data, we used the one obtained from towed array in neighboring waters of the Korean peninsula. Through simulation on data where tow-ship speed is maintained at a constant level, we confirmed that synthesis effect of increasing SNR and narrowed beam width of main lobe was consistently demonstrated for about 1 minute when coherence of target signal was maintained. Also, we showed that the synthesis effect with respect to time was constantly maintained.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.553-556
/
2022
본 논문에서는 거품 입자를 활용하여 시뮬레이션 장면에 맞는 소리를 효율적으로 합성할 수 있는 기법을 제안한다. 물리 기반 시뮬레이션 환경에서 소리를 표현하는 대표적인 방법은 생성과 합성이다. 사운드 생성의 경우 시뮬레이션 장면마다 물리 기반 접근법을 사용하여 소리를 생성할 수 있는데 계산 시간과 재질 표현의 어려움으로 다양한 시뮬레이션 장면에 대한 소리를 만들어 내기에는 쉽지 않다. 사운드 합성의 경우 소리 데이터를 미리 구축해야 하는 사전 준비가 필요하지만, 한 번 구축하면 비슷한 장면에서는 같은 소리 데이터를 활용할 수 있는 점이 있다. 따라서 본 논문에서는 거품 시뮬레이션의 소리 합성을 위해 소리 데이터를 구축하고 거품 입자의 효율적인 군집화를 통해 계산 시간을 줄이면서 소리의 사실감은 개선할 수 있는 사운드 합성 기법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.327-330
/
2023
머신러닝과 딥러닝 모델의 사용이 급증함에 따라 충분한 데이터 확보의 중요성이 부각되고 있다. 이에 따라 생성 모델을 통한 데이터 증강 기술이 주목받고 있으나, 증강 데이터를 활용했을 때 학습의 성능 분석은 아직 부족하다. 따라서 본 연구에서는 데이터 증강 시나리오에 따라 증강 비율별 합성 데이터의 유용성을 조사하고자 한다. 본 연구에서는 테이블 데이터를 증강하는 것에 초점을 맞추었으며, 이를 위해 테이블 데이터를 합성할 때 유용한 성능을 보이는 딥러닝 모델 CTGAN을 활용하였다. 실험에서 데이터를 증강하는 두 가지 다른 시나리오를 고려한 결과, 두 시나리오에서 모두 실험에서 설정한 증강 비율까지의 합성 데이터가 유용한 결과를 보임을 확인할 수 있었다.
In order to perform tasks such as design, control, optimization, and prediction of flight vehicle trajectories based on machine learning techniques including deep learning, a certain amount of flight vehicle trajectory data is required. However, there are cases in which it is difficult to secure more than a certain amount of flight vehicle trajectory data for various reasons. In such cases, synthetic data generation could be one way to make machine learning possible. In this paper, to explore this possibility, we generated and evaluated synthetic flight vehicle trajectory data using time-series generative adversarial neural network. In addition, various ablation studies (comparative experiments) were performed to explore the possibility of using synthetic data in the aircraft trajectory prediction task. The experimental results presented in this paper are expected to be of practical help to researchers who want to conduct research on the possibility of using synthetic data in the generation of synthetic flight vehicle trajectory data and the work related to flight vehicle trajectories.
GTL(Gas to Liquid) 합성유 생산 공정은 크게 합성가스 개질공정(reformer), FT 반응공정, upgrading 공정으로 구성된다. 본 연구에서는 FT 반응기에 유입되는 합성가스의 생산공정인 개질공정 최적화 시뮬레이션을 수행하였다. 기존에 HYSYS 공정 모사 tool로 구현한 개질공정 모델에 dynamic simulation을 적용하여 공정 운전 시간 변화에 따른 온도/압력/조성의 일정범위 별 생산 가스의 성분비를 모사하고자 한다. Dynamic 공정 시뮬레이션은 모사 대상 공정의 운전 시간 별 결과값 변화를 산출할 수 있는 방법으로 기존 정상상태(steady-state) 시뮬레이션에 비해 현실 공정의 운전 변수를 보다 더 정확하게 반영할 수 있는 장점이 있다. 본 시뮬레이션은 1bpd급 GTL 파일럿 플랜트의 설계 자료를 근거로 수행되었으며, 향후 운전 데이터를 feedback하여 최적의 운전 매뉴얼 도출자료로 활용코자 한다. 아울러, 다음의 시간 변화별 모사 결과 데이터들을 산출하고 공정의 최적운전 조건을 분석하고자 한다. - 시간에 따른 공정의 온도/압력 변화, 이에 연동되는 반응기 출구의 1) $H_2$/CO 비율, 2) $CH_4$ conversion, 3) $CO_2$ conversion 본 연구의 결과 데이터를 1bpd급 GTL 플랜트 내 합성가스 개질공정의 운전조건 최적화에 적용코자 하며, 이는 개질반응기의 안정적인 연속운전을 통한 GTL 통합공정의 운전 효율향상에 기여 가능하리라 기대된다. 향후 개질공정의 후단공정인 FT 합성공정 시뮬레이션 과업과 연계하여 GTL 통합공정 시뮬레이션 및 최적화에 따른 실증 규모의 스케일업 기반 데이터를 마련할 수 있을 것이다.
KIPS Transactions on Software and Data Engineering
/
v.11
no.11
/
pp.465-472
/
2022
In this paper, the style synthesis network is trained to generate style-synthesized video through the style synthesis through training Stylegan and the video synthesis network for video synthesis. In order to improve the point that the gaze or expression does not transfer stably, 3D face restoration technology is applied to control important features such as the pose, gaze, and expression of the head using 3D face information. In addition, by training the discriminators for the dynamics, mouth shape, image, and gaze of the Head2head network, it is possible to create a stable style synthesis video that maintains more probabilities and consistency. Using the FaceForensic dataset and the MetFace dataset, it was confirmed that the performance was increased by converting one video into another video while maintaining the consistent movement of the target face, and generating natural data through video synthesis using 3D face information from the source video's face.
Kim, Jinsung;Noh, Gaeun;Nam, Hyeongil;Park, Jong-Il
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.235-238
/
2022
본 논문은 인식이 어려운 조명 환경에도 강인한 seven-segment 문자 인식을 위해서, 영상 내에 다양한 조명 연출이 가능하도록 합성 데이터 셋을 생성하고 학습할 수 있는 OCR 방법을 제안한다. 기존 연구에서는 deblurring 과 같이 영상 이미지의 해상도를 높여 문자 인식의 정확도를 향상시키는 것에 초점을 두었으나, 여러 조명 환경에 대비할 수 있는 OCR 관련 연구들은 부족하다. 이를 해결하기 위해 본 논문에서는 문자가 포함된 자연스러운 배경 영상에, seven-segment 문자를 합성시킨 후 relighting 을 적용함으로써 실제 환경과 유사한 장면을 연출해 새로운 합성 데이터 셋을 생성한다. 그리고 생성된 데이터 셋을 딥러닝 기반 학습시켜 다양한 조명에도 강인한 문자 인식기를 만들고자 한다. 합성 데이터 셋의 사용여부와 일반적인 데이터 augmentation 기법의 사용 여부를 비교하여, 본 논문에서 제안한 방법의 효과를 확인할 수 있었다. 이를 통해서 seven-segment 문자 인식 뿐만 아니라, 다양한 문자에 대해서도 적용될 수 있는 초석이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.