• Title/Summary/Keyword: 데이터취득 및 전송

Search Result 69, Processing Time 0.02 seconds

The Implementation research of CAN linked safety sensor hardware (CAN 연계형 안전진단센서 하드웨어 설계에 관한 연구)

  • Jeong, Soon-Ho;Kim, Seoung-Kwon;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.209-213
    • /
    • 2010
  • This paper is a study of Car safety network system using sensed data from varied sensors. This hardware will work with various sensors and communication protocols. There are many sensors. Then, I selected 3 sensors for test, which were sonic sensor for distance checking, tilt sensor for rollover and impact sensor for car accident and theft. Also, there are many interfaces for sensor. Therefore I designed hardware to support various sensor interfaces. For instance ADC(Analog to Digital converter), I2C, RS232, RS485, CAN. In this case, sonic sensor have I2C interface, tilt sensor have RS485 interface and Impact sensor have analog interface. In this research, I can gather sensing data from 3 sensors (mentioned above), and sending control signal to other processor with RS232, RS485, CAN communication. So, we can use easily this hardware for many cases of systems, which need sensors.

Design and Implementation of Mobile Medical Information System Based Radio Frequency IDentification (RFID 기반의 모바일 의료정보시스템의 설계 및 구현)

  • Kim, Chang-Soo;Kim, Hwa-Gon
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.317-325
    • /
    • 2005
  • The recent medical treatment guidelines and the development of information technology make hospitals reduce the expense in surrounding environment and it requires improving the quality of medical treatment of the hospital. That is, with the new guidelines and technology, hospital business escapes simple fee calculation and insurance claim center. Moreover, MIS(Medical Information System), PACS(Picture Archiving and Communications System), OCS(Order Communicating System), EMR(Electronic Medical Record), DSS(Decision Support System) are also developing. Medical Information System is evolved toward integration of medical IT and situation si changing with increasing high speed in the ICT convergence. These changes and development of ubiquitous environment require fundamental change of medical information system. Mobile medical information system refers to construct wireless system of hospital which has constructed in existing environment. Through RFID development in existing system, anyone can log on easily to Internet whenever and wherever. RFID is one of the technologies for Automatic Identification and Data Capture(AIDC). It is the core technology to implement Automatic processing system. This paper provides a comprehensive basic review of RFID model in Korea and suggests the evolution direction for further advanced RFID application services. In addition, designed and implemented DB server's agent program and Client program of Mobile application that recognized RFID tag and patient data in the ubiquitous environments. This system implemented medical information system that performed patient data based EMR, HIS, PACS DB environments, and so reduced delay time of requisition, medical treatment, lab.

  • PDF

Development of Image-map Generation and Visualization System Based on UAV for Real-time Disaster Monitoring (실시간 재난 모니터링을 위한 무인항공기 기반 지도생성 및 가시화 시스템 구축)

  • Cheon, Jangwoo;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.407-418
    • /
    • 2018
  • The frequency and risk of disasters are increasing due to environmental and social factors. In order to respond effectively to disasters that occur unexpectedly, it is very important to quickly obtain up-to-date information about target area. It is possible to intuitively judge the situation about the area through the image-map generated at high speed, so that it can cope with disaster quickly and effectively. In this study, we propose an image-map generation and visualization system from UAV images for real-time disaster monitoring. The proposed system consists of aerial segment and ground segment. In the aerial segment, the UAV system acquires the sensory data from digital camera and GPS/IMU sensor. Communication module transmits it to the ground server in real time. In the ground segment, the transmitted sensor data are processed to generate image-maps and the image-maps are visualized on the geo-portal. We conducted experiment to check the accuracy of the image-map using the system. Check points were obtained through ground survey in the data acquisition area. When calculating the difference between adjacent image maps, the relative accuracy was 1.58 m. We confirmed the absolute accuracy of the image map for the position measured from the individual image map. It is confirmed that the map is matched to the existing map with an absolute accuracy of 0.75 m. We confirmed the processing time of each step until the visualization of the image-map. When the image-map was generated with GSD 10 cm, it took 1.67 seconds to visualize. It is expected that the proposed system can be applied to real - time monitoring for disaster response.

Development of SaaS cloud infrastructure to monitor conditions of wind turbine gearbox (풍력발전기 증속기 상태를 감시하기 위한 SaaS 클라우드 인프라 개발)

  • Lee, Gwang-Se;Choi, Jungchul;Kang, Seung-Jin;Park, Sail;Lee, Jin-jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.316-325
    • /
    • 2018
  • In this paper, to integrate distributed IT resources and manage human resource efficiently as purpose of cost reduction, infrastructure of wind turbine monitoring system have been designed and developed on the basis of SaaS cloud. This infrastructure hierarchize data according to related task and services. Softwares to monitor conditions via the infrastructure are also developed. Softwares are made up of DB design, field measurement, data transmission and monitoring programs. The infrastructure is able to monitor conditions from SCADA data and additional sensors. Total time delay from field measurement to monitoring is defined by modeling of step-wise time delay in condition monitoring algorithms. Since vibration data are acquired by measurements of high resolution, the delay is unavoidable and it is essential information for application of O&M program. Monitoring target is gearbox in wind turbine of MW-class and it is operating for 10 years, which means that accurate monitoring is essential for its efficient O&M in the future. The infrastructure is in operation to deal with the gearbox conditions with high resolution of 50 TB data capacity, annually.

DEM_Comp Software for Effective Compression of Large DEM Data Sets (대용량 DEM 데이터의 효율적 압축을 위한 DEM_Comp 소프트웨어 개발)

  • Kang, In-Gu;Yun, Hong-Sik;Wei, Gwang-Jae;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.265-271
    • /
    • 2010
  • This paper discusses a new software package, DEM_Comp, developed for effectively compressing large digital elevation model (DEM) data sets based on Lempel-Ziv-Welch (LZW) compression and Huffman coding. DEM_Comp was developed using the $C^{++}$ language running on a Windows-series operating system. DEM_Comp was also tested on various test sites with different territorial attributes, and the results were evaluated. Recently, a high-resolution version of the DEM has been obtained using new equipment and the related technologies of LiDAR (LIght Detection And Radar) and SAR (Synthetic Aperture Radar). DEM compression is useful because it helps reduce the disk space or transmission bandwidth. Generally, data compression is divided into two processes: i) analyzing the relationships in the data and ii) deciding on the compression and storage methods. DEM_Comp was developed using a three-step compression algorithm applying a DEM with a regular grid, Lempel-Ziv compression, and Huffman coding. When pre-processing alone was used on high- and low-relief terrain, the efficiency was approximately 83%, but after completing all three steps of the algorithm, this increased to 97%. Compared with general commercial compression software, these results show approximately 14% better performance. DEM_Comp as developed in this research features a more efficient way of distributing, storing, and managing large high-resolution DEMs.

The Development of Map Supply System Based on Web (웹 기반 지도공급 시스템 개발)

  • Park, Ki-Surk;Park, Kyeong-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.123-131
    • /
    • 2009
  • The telecommunication technology in the 21st century has come up to the standard which could transmit various spatial information by means of on-line and the printing technology using computers has been on a par with presswork in quality. In addition, map users also would like to get various spatial information through on-line directly or indirectly. None the less, the supply system of national base map in our country has maintained the off-line sales method. It is owing to this reason that the nation's supply system has shown a high degree of inefficiency from the viewpoint of the inventory control, rapidity, and economical efficiency as compared with the on-line sales system in the developed countries. This study tried to analyze some problems of the present supply system in order to build up the foundation of the efficient map supply system and also developed the system such as On-demand maps, on-line paying and sales, inventory control, meta dat establishment, and security module, etc. This study tried to analyze some problems of the present supply system in order to build up the foundation of the efficient map supply system and also developed the system such as On-demand maps, on-line paying and sales, inventory control, meta dat establishment, and security module, etc.

  • PDF

Volumetric Image System for High Efficiency Video Coding (고효율 비디오코딩을 위한 입체영상시스템)

  • Kim, Sang Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.515-520
    • /
    • 2016
  • Volumetric image system has many applications recently in education, 3D movie, medical images but these applications have several problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for realtime display. In case of stereo system for volumetric display motion vectors, disparity vectors from the stereoscopic sequences and residual images with the reference images has been transmitted, and the stereoscopic sequences have been reconstructed at the receiver for volumetric display. So central issue for the design of efficient volumetric image system lies in selecting an appropriate stereo matching and robust vision system. In this paper, we proposed high efficient vision system, which design vision stage with rotating and moving horizontally, and match the successive stereo image efficiently. In experimental results with volumetric image system, the proposed method represents high efficiency with minimizing error and low computational load for volumetric display.

Implementation of Air Pollutant Monitoring System using UAV with Automatic Navigation Flight

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a system for monitoring air pollutants such as fine dust using an unmanned aerial vehicle capable of autonomous navigation. The existing air quality management system used a method of collecting information through a fixed sensor box or through a measurement sensor of a drone using a control device. This has disadvantages in that additional procedures for data collection and transmission must be performed in a limited space and for monitoring. In this paper, to overcome this problem, a GPS module for location information and a PMS7003 module for fine dust measurement are embedded in an unmanned aerial vehicle capable of autonomous navigation through flight information designation, and the collected information is stored in the SD module, and after the flight is completed, press the transmit button. It configures a system of one-stop structure that is stored in a remote database through a smartphone app connected via Bluetooth. In addition, an HTML5-based web monitoring page for real-time monitoring is configured and provided to interested users. The results of this study can be utilized in an environmental monitoring system through an unmanned aerial vehicle, and in the future, various pollutants measuring sensors such as sulfur dioxide and carbon dioxide will be added to develop it into a total environmental control system.

Comparative Performance Analysis of Feature Detection and Matching Methods for Lunar Terrain Images (달 지형 영상에서 특징점 검출 및 정합 기법의 성능 비교 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.437-444
    • /
    • 2020
  • A lunar rover's optical camera is used to provide navigation and terrain information in an exploration zone. However, due to the scant presence of atmosphere, the Moon has homogeneous terrain with dark soil. Also, in extreme environments, the rover has limited data storage with low computation capability. Thus, for successful exploration, it is required to examine feature detection and matching methods which are robust to lunar terrain and environmental characteristics. In this research, SIFT, SURF, BRISK, ORB, and AKAZE are comparatively analyzed with lunar terrain images from a lunar rover. Experimental results show that SIFT and AKAZE are most robust for lunar terrain characteristics. AKAZE detects less quantity of feature points than SIFT, but feature points are detected and matched with high precision and the least computational cost. AKAZE is adequate for fast and accurate navigation information. Although SIFT has the highest computational cost, the largest quantity of feature points are stably detected and matched. The rover periodically sends terrain images to Earth. Thus, SIFT is suitable for global 3D terrain map construction in that a large amount of terrain images can be processed on Earth. Study results are expected to provide a guideline to utilize feature detection and matching methods for future lunar exploration rovers.