이 연구는 서울시 세대별(청년층, 중년층) 창업의 공간적 분포와 영향 요인을 분석하는데 목적이 있었다. 이를 위해 창업가의 연령대 자료를 포함하고 있는 서울시 사업체조사(2018) 데이터를 활용하여 서울시 424개 행정동의 세대별 창업 분포를 분석했으며, 산업, 인구구조 및 창업지원 기관 관련 변인이 포함된 연구모형을 설정하여 세대별 창업의 영향 요인을 분석하였다. 분석 방법은 서울시 행정동의 세대별 창업과 주요 변인들의 빈도, 평균 및 표준편차를 확인하기 위해 기술통계를 활용했으며, 전역적, 국지적 공간자기상관 분석을 통해 세대별 창업의 공간적 분포를 분석하였다. 특히 세대별 전체 창업과 주요 산업별 창업을 구분하여 분석함으로써 서울시 창업의 공간 분포를 심층적으로 확인하였다. 이후 라그랑주 검정을 통해 공간회귀분석 모형을 선택하였으며, 이를 바탕으로 세대별 창업에 미치는 지역적 영향 요인을 분석하였다. 연구결과를 통해 도출한 주요 결과는 다음과 같다. 첫째, 청년층과 중년층 창업의 공간적 분포에 유의미한 차이가 있었다. 청년층은 서초·강남-용산-마포-강서구로 이어지는 벨트 지역에서 창업이 활발하게 이루어졌지만, 중년층은 서초·강남·송파·강동으로 대표되는 동남권 지역의 창업이 활발한 편이었다. 둘째, 서울시 세대별 창업은 업종에 따라 다양한 공간적 분포를 보였다. 지식첨단산업(정보통신, 전문서비스)은 세대 공통적으로 서초, 강남, 마포, 구로, 금천구가 중심지역이었으며, 제조업은 기존 집적지를 중심으로 창업이 집중되어 있었다. 반면 생활서비스업의 경우 청년층은 용산, 마포, 관악 등 대학과 문화 중심지역에서 창업이 활발했으며, 중년층은 신시가지 중심으로 창업이 집중되었다. 셋째, 서울시의 세대별 창업 입지에 대한 영향 요인에 차이가 있었다. 청년층은 첨단산업, 대학, 문화자본 및 인구 밀집이 창업에 유의미한 영향 요인이었으며, 중년층은 전문서비스 특화도, 낮은 평균연령, 창업지원 기관 밀집 수준이 창업에 유의미한 영향을 미쳤다. 또한 이러한 입지요인은 산업별로 차별적인 영향이 있었다. 연구를 통해 제시한 제언은 다음과 같다. 첫째, 서울시 지역, 산업 및 세대별 특성을 고려한 체계적인 창업지원이 필요하다. 세대별 창업 지역과 산업에 상당한 차이가 있는 만큼 지역 및 산업적 특성을 고려한 맞춤형 창업지원 체계를 강화할 필요가 있다. 둘째, 연구 방법적 측면에서 데이터 축적을 통해 자치구 단위에서 문화, 재정 등을 종합적으로 고려한 후속 연구가 필요하다.
스포츠 경기에서 발생하는 현상이나 경기기록을 분석하는 스포츠 경기분석 분야에 첨단기술과 다양한 과학적 분석기법이 적용되고 있으며, 그 중 패스네트워크 분석에 사회연결망분석 방법이 활발히 활용되고 있다. 축구는 선수 간 패스라는 상호작용을 통해 경기가 이루어지는 대표적인 스포츠인 만큼 사회연결망분석을 이용하여 기존에는 측정할 수 없었던 경기에 대한 새로운 정보를 제공하고자 노력하고 있다. 이에, 본 연구에서는 단일 축구팀의 (1) 시간 흐름에 따른 패스네트워크의 변화를 분석하고, (2) 전술의 변화에 영향을 미치는 주요 요인 중 경기의 성격 변화(카타르월드컵 vs. A매치)와 (3) 상대팀 변화(FIFA랭킹 상위팀 vs. FIFA랭킹 하위팀)에 대한 패스네트워크까지 총 세 가지 상황을 비교∙분석하고자 하였다. 보다 구체적으로, 벤투 감독 부임 이후 한국 남자축구국가대표팀의 경기 중 10 경기를 선별하고, 이에 대한 네트워크 지표를 추출하였으며, 축구팀 경기력 평가모델의 네 가지 지표(효율성, 응집력, 취약성, 활동성/리더십)를 추출된 데이터에 적용한 후 세 가지 상황을 각각 분석하였다. 연구결과, 시간 흐름에 따른 경기력 분석에서 응집력이 유의하게 상승하고, 취약성이 유의하게 하락하는 것을 확인할 수 있었고, 경기성격 변화에 따른 비교분석에서는 카타르월드컵 경기가 A매치 경기보다 평가모델의 모든 항목에서 경기력이 우수한 것으로 나타났다. 마지막으로, 상대팀의 변화에 따른 비교분석에서는 FIFA랭킹 하위팀과의 경기가 상위팀과의 경기보다 평가모델의 모든 항목에서 경기력이 우수하게 나타났다. 본 연구의 결과가 축구팀의 감독 선임 및 경기 전략을 수립하는데 주요한 기초자료로 활용되어 축구팀의 경기력 향상에 기여할 수 있기를 기대한다.
오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.
투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.
RFID(Radio Frequency Identification)시스템은 하나의 RFDI리더, 다수의 RFID태그 장치들로 이루어진 비접촉방식의 근거리 무선 인식 기술이다. RFID태그는 자체적인 연산 수행이 가능한 능동형 태그와 이에 비해 성능은 떨어지지만 저렴한 가격으로 물류 유통에 적합한 수동형 태그로 나눌 수 있다. 데이터 처리 장치는 리더와 연결되어 리더가 전송받은 정보를 처리한다. RFID 시스템은 무선주파수를 이용해 다수의 태그를 빠른 시간에 인식할 수 있다. RFID시스템은 유통, 물류, 운송, 물품관리, 출입 통제, 금융 등 다양한 분야에서 응용되고 있다. 하지만 RFID시스템을 더욱 확산시키기 위해서는 가격, 크기, 전력소모, 보안 등 해결할 문제가 많다. 그 문제들 중에서 본 논문에서는 다수의 수동형 태그를 인식할 때 발생하는 충돌 문제를 해결하기 위한 알고리즘을 제안한다. RFID 시스템에서 다수의 태그를 인식하기 위한 충돌 방지 기법에는 확률적인 방식과 결정적인 방식 그리고 이를 혼합한 하이브리드 방식이 있다. 본 논문에서는 우선 기존에 있던 확률적 방식의 충돌방지기법인 알로하 기반 프로토콜과 결정적 방식의 충돌방지기법인 트리 기반 프로토콜에 대해 소개한다. 알로하 기반 프로토콜은 시간을 슬롯 단위로 나누고 태그들이 각자 임의로 슬롯을 선택하여 자신의 ID를 전송하는 방식이다. 하지만 알로하 기반 프로토콜은 태그가 슬롯을 선택하는 것이 확률적이기 때문에 모든 태그를 인식하는 것을 보장하지 못한다. 반면, 트리 기반의 프로토콜은 리더의 전송 범위 내에 있는 모든 태그를 인식하는 것을 보장한다. 트리 기반의 프로토콜은 리더가 태그에게 질의 하면 태그가 리더에게 응답하는 방식으로 태그를 인식한다. 리더가 질의 할 때, 두 개 이상의 태그가 응답 한다면 충돌이라고 한다. 충돌이 발생하면 리더는 새로운 질의를 만들어 태그에게 전송한다. 즉, 충돌이 자주 발생하면 새로운 질의를 자주 생성해야하기 때문에 속도가 저하된다. 그렇기 때문에 다수의 태그를 빠르게 인식하기 위해서는 충돌을 줄일 수 있는 효율적인 알고리즘이 필요하다. 모든 RFID태그는 96비트의 EPC(Electronic Product Code)의 태그ID를 가진다. 이렇게 제작된 다수의 태그들은 회사 또는 제조업체에 따라 동일한 프리픽스를 가진 유사한 태그ID를 가지게 된다. 이 경우 쿼리 트리 프로토콜을 이용하여 다수의 태그를 인식 하는 경우 충돌이 자주 일어나게 된다. 그 결과 질의-응답 수는 증가하고 유휴 노드가 발생하여 식별 효율 및 속도에 큰 영향을 미치게 된다. 이 문제를 해결하기 위해 충돌 트리 프로토콜과 M-ary 쿼리 트리 프로토콜이 제안되었다. 하지만 충돌 트리 프로토콜은 쿼리 트리 프로토콜과 마찬가지로 한번에 1비트씩 밖에 인식을 못한다는 단점이 있다. 그리고 유사한 태그ID들이 다수 존재할 경우, M-ary 쿼리 트리 프로토콜을 이용해 인식 하면, 불필요한 질의-응답이 증가한다. 본 논문에서는 이러한 문제를 해결하고자 M-ary 쿼리 트리 프로토콜의 매핑 함수를 이용한 m-비트 인식, 맨체스터 코딩을 이용한 태그 ID의 충돌정보, M-ary 쿼리 트리의 깊이를 하나 감소시킬 수 있는 예측 기법을 이용하여 성능을 향상시킨 적응형 M-ary 쿼리트리 프로토콜을 제안한다. 본 논문에서는 기존의 트리기반의 프로토콜과 제안하는 기법을 동일한 조건으로 실험하여 비교 분석 하였다. 그 결과 제안하는 기법은 식별시간, 식별효율 등에서 다른 기법들보다 성능이 우수하다.
2020년 1월부터 2021년 10월 현재까지 COVID-19(치명적인 호흡기 증후군인 코로나바이러스-2)와 관련된 학술 연구가 500,000편 이상 발표되었다. COVID-19와 관련된 논문의 수가 급격하게 증가함에 따라 의료 전문가와 정책 담당자들이 중요한 연구를 신속하게 찾는 것에 시간적·기술적 제약이 따르고 있다. 따라서 본 연구에서는 LDA와 Word2vec 알고리즘을 사용하여 방대한 문헌의 텍스트 자료로부터 유용한 정보를 추출하는 방안을 제시한다. COVID-19와 관련된 논문에서 검색하고자 하는 키워드와 관련된 논문을 추출하고, 이를 대상으로 세부 주제를 파악하였다. 자료는 Kaggle에 있는 CORD-19 데이터 세트를 활용하였는데, COVID-19 전염병에 대응하기 위해 주요 연구 그룹과 백악관이 준비한 무료 학술 자료로서 매주 자료가 업데이트되고 있다. 연구 방법은 크게 두 가지로 나뉜다. 먼저, 47,110편의 학술 논문의 초록을 대상으로 LDA 토픽 모델링과 Word2vec 연관어 분석을 수행한 후, 도출된 토픽 중 'vaccine'과 관련된 논문 4,555편, 'treatment'와 관련된 논문 5,791편을 추출한다. 두 번째로 추출된 논문을 대상으로 LDA, PCA 차원 축소 후 t-SNE 기법을 사용하여 비슷한 주제를 가진 논문을 군집화하고 산점도로 시각화하였다. 전체 논문을 대상으로 찾을 수 없었던 숨겨진 주제를 키워드에 따라 문헌을 분류하여 토픽 모델링을 수행한 결과 세부 주제를 찾을 수 있었다. 본 연구의 목표는 대량의 문헌에서 키워드를 입력하여 특정 정보에 대한 문헌을 분류할 수 있는 방안을 제시하는 것이다. 본 연구의 목표는 의료 전문가와 정책 담당자들의 소중한 시간과 노력을 줄이고, 신속하게 정보를 얻을 수 있는 방법을 제안하는 것이다. 학술 논문의 초록에서 COVID-19와 관련된 토픽을 발견하고, COVID-19에 대한 새로운 연구 방향을 탐구하도록 도움을 주는 기초자료로 활용될 것으로 기대한다.
추천시스템은 사용자의 과거 구매행동을 통해 향후 구매할 것이라고 예상되는 제품을 자동으로 검색하여 추천해준다. 특히 전자상거래 기업의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로 가치가 있다. 하지만, 전통적인 추천시스템, 특히 학계 및 산업계에서 가장 널리 사용되고 있는 전통적인 협업필터링 기법은 단일차원의 '종합 평점'만을 고려하여 추천결과를 생성하도록 설계되어 있어, 사용자들의 정확한 니즈를 이해하고 대응하는데 근본적인 한계가 있다. 최근에는 전자 상거래 기업들도 고객들로부터 보다 다각화된, 다기준 방식으로 피드백을 받고 있다. 특히 다기준 평점은 정량적으로 입력되는 정보이므로 상대적으로 분석 및 처리가 용이하다는 장점이 있다. 그러나 다기준 평점 역시 사전에 정해진 기준에 대해서만 사용자의 피드백이 이루어지기 때문에, 보다 상세하게 사용자의 의견을 이해하여 추천에 반영하는 데에는 한계가 있다. 이에 본 연구는 다기준 평점 정보와 선택적 협업필터링의 서로 다른 접근방법을 통해 도출된 추천결과를 종합하여, 최종적으로 추천 대상리스트를 산출할 수 있는 하이브리드 기술을 제안한다. 본 연구에서 제안한 연구모형의 유용성을 검증하기 위해, 식음료점(식당, 카페 등)에 대한 실제 이용자를 대상으로 온라인 설문을 통해 종합 평점과 다기준 평점을 수집하였으며, 데이터를 학습용과 검증용으로 구분하여 학습시키고 성과를 평가하였다. 이 기법은 결합 함수 기반 접근법과 사용자마다 구매의사결정의 체계가 다르다는 전제하에, 사용자들을 유형화하고, 유형에 따라 정보원을 선택적으로 활용하는 협업필터링 알고리즘을 활용했다. 실험결과, 제안 알고리즘을 통한 추천 방법이 단일 차원을 고려하는 전통적인 협업필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인했다. 아울러, 본 연구가 제안하는 다기준 평점과 선택적 협업필터링 알고리즘을 종합하여 추천하는 방법이, 단순히 다기준 평점을 고려했을 때 보다 통계적으로 유의한 수준의 정확도의 개선이 이루어짐을 확인할 수 있었다.
최근 ICT융합기술이 다양한 산업분야와 사회 전반에 확산되고 적용됨에 따라 국내 농업의 많은 현안 과제를 해결하기 위한 수단 중 하나로써 스마트팜을 활용한 농촌창업에 대한 관심이 높아지고 있다. 이러한 배경에서 본 연구는 스마트팜을 활용한 농촌창업의도에 미치는 영향요인들을 지각된 유용성 측면에서 살펴보고 이를 바탕으로 스마트팜 창업 확산을 위한 제언을 하고자 하였다. 연구대상은 20세 이상의 일반 성인 296명이었고, 연구방법으로는 IBM SPSS 22.0을 활용하여 탐색적 요인분석과 다중회귀분석을 실시하였다. 독립변수로는 스마트팜의 지각된 유용성 요인으로 가용성, 신뢰성, 경제성을 선정하여 종속변수인 스마트팜을 활용한 농촌창업의도에 미치는 영향을 분석하였고, 개인혁신성의 조절효과를 분석하였다. 연구결과, 스마트팜의 신뢰성과 경제성은 스마트팜을 활용한 농촌창업의도에 정(+)의 영향을 미치는 것으로 나타났다. 조절효과와 관련하여 개인혁신성은 스마트팜의 가용성, 신뢰성과 농촌창업의도간의 관계를 조절하는 것으로 나타났다. 따라서 스마트팜으로부터 제공되는 재배환경 및 생육 관련 데이터와 정보에 대한 신뢰 정도가 높을수록, 그리고 스마트팜을 통해 비용절감 및 수익성 제고 효과가 있을 것으로 기대하는 정도가 클수록 스마트팜을 활용해 창업하려는 의지에 긍정적인 영향을 미친다는 결과를 확인할 수 있었다. 또한 타인보다 앞서서 혁신기술을 적극적으로 수용하려는 성향은 그 영향력을 강화하는 쪽으로 조절한다는 결과를 확인할 수 있었다. 이러한 연구 결과는 내적 개인특성, 외적 환경요인 등의 일반적인 창업의도 영향요인 연구에서 벗어나 스마트팜의 지각된 유용성 관점에서 농촌창업의도 영향 요인을 새롭게 발굴하고 실증적으로 밝혔다는 데 의의를 지니고 있으며, 연구의 시사점은 잠재적 스마트팜 창농인을 대상으로 한 정책수립의 방향성 모색, 실제 현장에서의 스마트팜 교육 및 컨설팅에서 활용할 수 있을 것으로 기대한다.
고령화 시대에 건강을 유지하고 증진시키기 위한 가장 중요한 필수 요건 중 하나는 바로 구강건강이다. 특히 재가노인들의 구강건강 개선은 그들의 삶의 질에 직접적인 영향을 미치며, 의치의 위생적인 관리와 깊은 연관관계가 있는 것으로 알려져 있다. 하지만 노인의치의 청결한 관리의 중요성이 강조되고 있음에도 불구하고 시장에 출시된 의치관련 세정제들의 정량적인 성능평가나 연구는 부족한 실정이다. 따라서 본 연구의 목적은 단백분해효소가 들어있는 의치세정제의 음식물 얼룩 제거성능을 평가하여, 세정제를 이용한 자가 세정방법에 대한 기본 자료와 재가노인들의 구강건강을 위한 효율적인 치료 개선방안을 제시하는 것이다. 세 가지 종류의 각 단백효소 의치세정제의 음식 얼룩 제거성능에 관한 정량적인 데이터를 확보하기 위하여 한국소비자원이 제시한 시험평가방법과 관련 재료의 시험평가 기준인 ISO 20795가 사용되었다. 총 18개의 시편이 강황성분을 용해한 물에 48시간 담가 변색시킨 후, 각각의 단백효소 의치세정제로 24시간 동안 세정하였다. 세정시킨 의치 시편은 분광광도계를 이용하여 변색 전 의치 시편의 색조 값과 변색 시편을 의치세정제로 세정한 후의 색조 값의 색차를 정량적으로 측정하였다. 실험 값은 one-way ANOVA with post-hoc Tukey's test를 통해 분석 되었으며, 각 실험 군들 간의 통계적으로 유의한 차이를 발견하고 C가 A와 B보다 통계적으로 유의한 얼룩제거성능이 있는 것을 확인 할 수 있었다(p<.05). 모든 실험은 2017년 7월 3일부터 7월 23일까지 총 21일간 진행되었다. 이상과 같은 결과를 통해 노인의치의 적절한 의치관리 법으로 최소한의 손상을 주는 세척방법이 권장되고, 올바른 정보를 제공할 필요가 있으며, 고령화시대에 지속적인 구강보건과 구강건강에 노인의치의 재가 세정작업에 최적화하고자 한다.
레이노 현상에 대한 검사 중 $^{201}Tl$을 이용한 검사에서 관류영상을 composite하여 혈액 풀 영상 과 국소 지연 영상 관찰 및 비교 시의 유용성에 대해서 평가하고자 한다. 2008년 2월부터 2009년 8월까지 레이노 현상을 호소로 경희대학교 동서 신의학병원 혈관외과를 찾은 29명을 대상으로 시행하였다. 방사성 동위원소는 $^{201}Tl$ 111 Mbq (3 mCi)를 검사부위 반대편 팔과 다리의 대각선 사지에 정맥 내 주사하였고, 최초 dynamic 관류 영상과 혈액 풀 영상 그리고 국소지연 영상을 저에너지 고해상도 조준기를 장착한 감마카메라를 이용하여 검사하였다. 보고자 하는 손 또는 발에 대한 관심영역(ROI : Region of Interest)은 관류영상을 composite한 영상과 혈액 풀 영상, 국소 지연 영상 순으로 양측을 동시 분석하였고 대응표본 T 검정(SPSS v12.0)을 이용하여 p-value를 측정하여 데이터의 상관관계를 확인하였다. 분석대상 29명의 레이노 환자(positive)에서 분석된 관류 composite 영상, 혈액 풀 영상, 국소 지연 영상에서 나타난 count ratio(Rt./Lt.)의 평균은 $1.25{\pm}0.39$, $1.20{\pm}0.33$, $1.11{\pm}0.17$이었다. 이를 바탕으로 혈액 풀 영상과 국소 지연 영상의 대응표본 T-검정결과 p<0.029를 만족했고, 또한 관류 composite 영상에 대한 혈액 풀 영상(p<0.038)과 국소 지연 영상 (p<0.016)이 각각 차이가 없음을 알 수 있었다. $^{201}Tl$을 이용한 Raynaud scan에서 관류 영상을 composite함으로써 혈액 풀 영상과 국소 지연 영상을 비교 평가하는데 도움을 줄 수 있었다. 또한 육안적 식별도 가능하여 향후 좀 더 깊이있는 연구가 진행된다면 보다 적절하고 유용한 진단적 정보를 얻을 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.