• 제목/요약/키워드: 데이터상품

검색결과 715건 처리시간 0.027초

상품군 연관망 기반의 상품가치 평가모형 (Product Value Evaluation Models based on Itemset Association Chain)

  • 장용식
    • 지능정보연구
    • /
    • 제16권2호
    • /
    • pp.1-17
    • /
    • 2010
  • 연관분석에 의한 연관규칙은 상품 간 연관성을 나타내고 있으며, 교차판매와 상품진열 등의 마케팅 전략에 활용되고 있다. 그러나, 교차판매 효과를 반영하는 더 실질적인 상품가치를 평가한다면, 상품구색과 이윤극대화 등의 기업 의사결정에 더 유용하게 활용될 수 있을 것이다. 본 연구는 단일상품 간의 연관망과 상품군 간의 연관망 기반에서 상품의 순수가치, 이득가치, 손실가치로 구성되는 유효가치를 바탕으로 상품의 가치를 평가하는 수학적 모형을 제시하고, 두 모형에 대해 각각 예시를 통한 평가과정을 기술하였다. 이 경우, 상품군은 단일상품을 포함하기 때문에 상품군 간 연관망 기반에서의 상품가치 평가모형은 단일상품 기반의 평가모형을 포함하고 있다. 모형의 실질적인 유용성을 보이기 위하여, 국내 한 온라인 쇼핑몰의 과거 1년 간 의류 관련 거래데이터 표본을 이용하여 상품분류군 간의 연관규칙을 발견하고 상품분류별 유효가치를 평가하는 실험을 하였다. 표본은 총 106개 상품분류와 48,044건의 거래 데이터로 이루어져 있다. 먼저, SPSS Clementine 12.0을 이용하여 상품분류군 간 18개의 연관규칙을 발견하였다. 한편, 순수가치와 연관규칙을 바탕으로 이득가치, 손실가치를 계산하고 유효가치를 평가하는 JAVA 어플리케이션을 구현하였다. 유효가치 평가의 실험결과, 순수가치보다 큰 유효가치를 갖는 상품분류가 있는 반면, 순수가치 보다 작은 유효가치를 갖는 상품분류를 확인하였다. 본 연구는 상품 연관망에서 일차적인 관계만을 고려한 유효가치를 평가하였다. 향후, 다단계 연관성의 교차판매 효과를 반영하는 고차적인 평가모형 연구는 보다 효과적인 유효가치 평가를 가능케할 것이다.

빅 데이터를 활용한 애완동물 상품 추천 시스템 구현 (Implementation of a pet product recommendation system using big data)

  • 김삼택
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.19-24
    • /
    • 2020
  • 최근, 애완동물의 급격한 증가로 애완동물의 건강상태 체크와 다양하게 수집된 데이터를 활용하여 사료 추천 등 통합적인 애완동물관련 개인화 상품 추천 서비스가 요구된다. 본 논문은 빅 데이터 기술을 활용하여 애완동물관련 데이터 수집, 전처리, 분석, 관리등 다양한 개인화서비스를 할 수 있는 상품 추천시스템을 구현한다. 먼저, 애완동물이 착용하고 있는 센서 정보와 고객의 구매 패턴, SNS 정보를 수집해 데이터베이스에 저장하고 통계적 분석을 활용하여 사료제작, 애완동물 건강관리 등 맞춤형 개인화 추천 서비스가 가능한 플랫폼을 구현한다. 본 플랫폼은 유사도가 분석될 상품과 상품정보에 대한 유사도 상품 정보를 출력하고 최종적으로 추천 분석한 결과를 출력하여 고객에게 정보를 제공 할 수 있다.

워드 임베딩을 이용한 아마존 패션 상품 리뷰의 사용자 감성 분석 (User Sentiment Analysis on Amazon Fashion Product Review Using Word Embedding)

  • 이동엽;조재춘;임희석
    • 한국융합학회논문지
    • /
    • 제8권4호
    • /
    • pp.1-8
    • /
    • 2017
  • 현대 사회에서 패션 시장의 규모는 해외와 국내 모두 지속적으로 증가하고 있다. 전자상거래를 통해 상품을 구입하는 경우 다른 소비자들이 작성한 상품에 대한 평가 데이터는 소비자가 상품의 구입 여부를 결정하는데에 영향을 미친다. 기업의 입장에서도 상품에 대한 소비자의 평가 데이터를 분석하여 소비자의 피드백을 반영한다면 기업의 성과에 긍정적인 영향을 미칠 수 있다. 이에 본 논문에서는 아마존 패션 상품의 리뷰 데이터를 학습하여 형성된 워드임베딩 공간을 이용하여 사용자의 감성을 분석하는 모델을 구축하는 방법을 제안한다. 실험은 아마존 리뷰 데이터 570만건을 학습하여 형성된 워드임베딩 공간을 이용하여 긍정, 부정 리뷰 데이터의 개수에 따라 총 3개의 SVM 분류기 모델을 학습하는 방식으로 진행하였다. 실험 결과 긍정 리뷰 데이터 5만건, 부정 리뷰데이터 5만건을 이용하여 SVM 분류기를 학습하였을 때 88.0%로 가장 높은 정확도(accuracy)를 나타냈다.

MMDB를 이용한 전자상거래 상품추천 시스템 (Recommendation System for E-Commerce using MMDB)

  • 김용기;이경희;한정혜;이충세
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (3)
    • /
    • pp.466-468
    • /
    • 2001
  • 전자상점에서 이루어지는 고객의 구매패턴이 온라인 상에서 데이터베이스화되어, 이를 통하여 고객의 취향에 맞는 상품을 제공할 수 있는 많은 알고리즘이 연구되고 있다. 이러한 알고리즘은 전자상점에서 고객의 개별특성을 고려한 상품을 제공하기 위하여, 고객정보 데이터베이스와 거래정의 데이터베이스로부터 연관규칙 등을 추출하여 사용한다. 그러나 시간의 흐름에 민감한 계절상품이나 특선상품과 같이 전자상점의 거래량에 크게 직결될 수 있는 것 등에도 같은 알고리즘을 적용한다면 추천성공률이 떨어질 것이다. 따라서 본 논문에서는 시간의 영향을 많이 받는 상품추천을 위하여, 최근 전자상점 추천시스템으로 효과적인 아이템 기반 협력알고리즘에 지수적 가중치를 적용하여 추천하는 알고리즘을 제안한다. 또한 이러한 추천시스템이 대용량의 고객데이터와 상품데이터에 대한 연산을 수행하고 다수의 고객에게 실시간으로 서비스를 제공하여야 하므로 MMDB를 활용한다.

  • PDF

텍스트 마이닝 기반의 온라인 상품 리뷰 추출을 통한 목적별 맞춤화 정보 도출 방법론 연구 (A Study on the Method for Extracting the Purpose-Specific Customized Information from Online Product Reviews based on Text Mining)

  • 김주영;김동수
    • 한국전자거래학회지
    • /
    • 제21권2호
    • /
    • pp.151-161
    • /
    • 2016
  • 개방, 공유, 참여를 특징으로 하는 웹 2.0 시대로 들어서면서 인터넷 사용자들의 데이터 생산 및 공유가 쉬워졌다. 이에 따른 데이터의 기하급수적인 증가와 함께 디지털 정보의 대부분인 비정형적 데이터(Unstructured Data)의 양도 증가하고 있다. 인터넷에서 정해진 형식 없이 자연어 형태로 만들어진 비정형 데이터 중, 특정 상품들에 대해 개인이 평가한 리뷰들은 해당 기업이나 해당 상품에 관심이 있는 잠재적 고객에게 필요한 데이터이다. 많은 양의 리뷰 데이터에서 상품에 대한 유용한 정보를 얻기 위해서는 데이터 수집, 저장, 전처리, 분석, 및 결론 도출의 과정이 필요하다. 따라서 본 연구는 R을 이용한 텍스트 마이닝(Text Mining) 기법을 사용하여 텍스트 형식의 비정형 데이터에서 자연어 처리 기술 및 문서 처리 기술을 적용하여 정형화된 데이터 값을 도출하는 방법에 대해 소개한다. 또한, 도출된 정형화된 리뷰 정보를 데이터 마이닝 기법에 적용하여 목적에 맞게 맞춤화된 리뷰 정보를 도출시키는 방안을 제시하고자 한다.

부품 및 소재의 신뢰성 보험 상품에 관한 연구

  • 홍연웅
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.15-17
    • /
    • 2003
  • 부품 및 소재산업의 육성을 위하여 2003년 4월부터 운영되는 신뢰성보험사업과 관련된 각종 제도를 검토하며, 신뢰성보험의 개념, 담보하는 위험의 분류, 운영체계 및 상품의 설계내용에 대하여 알아본다.

  • PDF

온라인 쇼핑몰에서 소셜 네트워크 데이터를 고려한 상품 트렌드 분석 (Item Trend Analysis Considering Social Network Data in Online Shopping Malls)

  • 박수빈;최도진;유재수;복경수
    • 한국콘텐츠학회논문지
    • /
    • 제20권2호
    • /
    • pp.96-104
    • /
    • 2020
  • 온라인 쇼핑몰의 활성화로 소비자들의 소비 활동이 활발해짐에 따라 기업들은 매출 증대를 위해 소비자의 상품 트렌드 분석을 수행하고 있다. 기존의 상품 트렌드 분석 기법들은 온라인 쇼핑몰 사용자의 활동만을 고려하여 분석하기 때문에 구매 이력이 없거나 새로운 상품에 대한 트렌드를 파악하기 어렵다. 본 논문에서는 쇼핑몰에서 사용자의 트렌드와 잠재적 고객의 트렌드를 분석하기 위해 온라인 쇼핑몰 데이터와 소셜 네트워크 데이터를 결합한 트렌드 분석 기법을 제안한다. 제안하는 기법은 서비스 내 데이터 분석을 위해 사용자의 활동로그를 분석하고 활동 로그가 없는 잠재적인 사용자들의 관심도를 반영하기 위해 소셜 네트워크 데이터에서 단어 집합 추출을 통해 생성한 핫 토픽을 결합하였다. 최종적으로 상품 지수와 소셜 네트워크에서의 언급수를 활용하여 시간에 따른 상품 트렌드 변화를 탐지한다. 소셜 네트워크 데이터를 활용한 성능 평가를 통해 제안하는 기법의 우수성을 입증한다.

E-commerce 환경에서 실시간 사용자 구매 패턴 분석을 통한 사용자 상품 추천 시스템 연구 (A Study on the Real-time user purchase pattern analysis User Product Recommendation System in E-Commerce Environment)

  • 김범중;허지혜;이협건;김영운
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.413-414
    • /
    • 2023
  • IT 기술의 발달로 E-Commerce 분야는 실시간으로 발생되는 데이터양이 증가하고 있으며, 발생된 데이터는 개인화 맞춤 서비스에 많이 활용되고 있다. 그러나 신생 E-commerce 기업은 신규 상품 및 기존 상품에 대한 정보와 고객 간의 상호 작용 데이터가 존재하지 않아 콜드 스타트 문제가 발생한다. 이에 본 논문에서는 E-commerce 환경에서 실시간 사용자 구매패턴 분석을 통한 사용자 상품 추천 시스템을 제안한다. 제안하는 시스템은 Kafka와 Spark를 사용해 실시간 스트림을 데이터를 처리한다. 주요 기능은 ALS 알고리즘과, FP-Growth 알고리즘을 적용해 콜트 스타트 문제를 해결하며, 사용자 구매 패턴 분석을 통한 분석 결과에 맞는 상품을 사용자에게 추천한다.

추천 시스템을 위한 웹 로그 분석 (Web Log Analysis for Recommendation Systems)

  • 강태기;김준태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.527-530
    • /
    • 2002
  • 협동적 추천은 사용자의 상품에 대한 구매 데이터를 이용하여 상품을 추천하는 방법이다. 그러나 구매 데이터가 희소한 경우 추천의 정확도가 떨어지는 문제점이 있다. 이러한 희소성 문제를 해결하기 위해서 클러스터링, SVD 등 다양한 방법이 제시되었으나, 근본적으로 사용자의 성향을 파악하기에는 부족한 점이 있다. 구매 데이터만을 이용했을 때의 문제점을 해결하기 위해서는 이를 보완할 수 있는 데이터의 활용이 필요하다. 웹 로그 분석을 통해서 구매 데이터의 희소성을 보완할 수 있으며, 사용자의 상품에 대한 부정적 반응을 구매 데이터에 반영할 수 있다. 본 논문에서는 웹 사이트에 접근하는 사용자들에 의해서 만들어진 웹 로그를 분석하여 추천 시스템의 성능을 개선하였다.

  • PDF

Generalized $\alpha$ chain rule에 기반한 Group Item Recommendation (Group Item Recommendation based on Generalized a Chain Rule)

  • 염선희;조동섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.241-243
    • /
    • 2001
  • 데이터 마이닝을 통해 우리는 숨겨진 지식, 예상되지 않았던 경향 그리고 새로운 법칙들을 방대한 데이터에서 이끌어내고자 한다. 본 논문에서 우리는 사용자들의 구매 트랜잭션을 시간에 따라 분석하여 동시에 구매되는 상품을 미리 예측하는 알고리즘을 제안하고자 한다. 기존의 방법들에서는 구매된 상품간의 시간차를 고려하지 않은 방법만을 제안해 왔다. 따라서 서로 연관되지 않은 상품군이 예측될 확률이 높았다. 본 논문에서 제안하고 있는 $\alpha$ chain rube에서는 일정 시간동안의 사용자들이 상품을 구매한 후 다음 상품을 구매할 때까지의 시간을 고려한다. 따라서 좀더 정확히 동시에 구매될 상품군을 예측할 수 있다. 본 논문은 제안하고 있는 $\alpha$ chain rule을 계산해 내는 알고리즘에 대해 주로 논의하겠다.

  • PDF