Proceedings of the Korea Information Processing Society Conference
/
2008.05a
/
pp.107-110
/
2008
상품평은 인터넷 쇼핑 이용자들의 최종 구매결정에 큰 영향을 미치는 것으로 알려져 있다. 많은 쇼핑몰에서 상품평 활성화를 위해 노력하고 있지만, 상품평을 모으는 것에만 주력할 뿐 기존에 수집된 상품평을 제공하는 방법에 있어서는 원시적인 수준에 그치고 있다. 상품평을 좀 더 효율적으로 제공하려면 사용자들이 상품평에서 찾게 될 평가항목들을 미리 예측하여 그 항목에 따라 상품평을 분류/요약해서 제공하는 방법을 생각할 수 있다. 본 논문에서는 상품평과 웹 검색엔진을 이용하여 각 상품별 평가항목들을 자동으로 추출하는 방법을 제안한다. 상품평 데이터의 특성상 노이즈가 많기 때문에 먼저 데이터를 정제하고, 정제된 상품평 데이터를 형태소 분석하여 후보명사들을 선택한다. 선택된 후보명사를 웹 검색엔진에 질의하여 반환된 결과 값으로 상품 카테고리와 후보명사 간 연관도를 계산하여 평가항목을 추출한다. 실험은 5개 상품 카테고리의 170,294개 실제 상품평을 대상으로 각 카테고리별 평가항목을 추출하였다.
In the domestic data exchanging market, unreasonable pricing of purchase data is consistently mentioned as a major obstacle in data trading. This is a problem caused by the inability to properly evaluate the value of data products due to lack of product information and experience in using them. In order to activate trading, the data exchanges need to provide information that allows consumers to comprehensively judge the value of data products in addition to prices. The cost-based, income-based, and market-based methods, which are mainly applied to data valuation, are insufficient as data valuation methods to stimulate trading and distribution because only price information, a result of valuation from a supplier's point of view, can be shared with consumers. This study aims to develop a measurable valuation method that allows data trading stakeholders (exchanges, suppliers, and consumers) to judge and share the value of data products from a common perspective. To this end, we identified the value drivers of data products, which are considered important in overseas data exchanges and related research, and derived an evaluation method that can quantitatively measure each value driver. In addition, evaluation criteria in the form of a rating table were developed using data products for transactions, and a value evaluation index was developed through stratification analysis (AHP) to enable relative value comparison. As a result of applying the evaluation criteria to actual data products, it was found that the evaluation values were differentiated according to the characteristics of individual data products, so it could be used as a relative value comparison tool.
Proceedings of the Korean Operations and Management Science Society Conference
/
2005.10a
/
pp.257-263
/
2005
초기에 하나의 상품 카테고리만을 다루던 전자상거래 사이트들이 브랜드 확립 후에 다른 상품 카테고리까지 확대해 나가는 모습을 많이 보아왔다. 고객이 아직 방문하지 않은 신규 상품 카테고리의 상품에 대하여 기존 상품 카테고리에서 만들어진 사용자 프로파일을 활용하여 개인화된 추천을 할 수 있다면, 고객이 다양한 상품 카테고리를 방문하도록 유도할 수 있을 것이다. 하지만 일반적으로 전자상거래 사이트에서는 상품 카테고리별로 사용자의 선호도를 파악하여 개인화된 추천을 수행하기 때문에, 해당 카테고리 내 상품의 구매나 방문 기록이 없다면 개인화된 추천을 수행하기가 어렵다 . 본 논문에서는 협업 필터링을 통해 신규 상품카테고리 내의 상품을 추천하기 어려운 고객들을 대상으로 기존의 사용자 선호도 데이터를 활용하여 신규 상품 카테고리 내의 상품을 추천하는 방안의 타당성을 살펴보도록 한다. 즉, 기존 사용자의 특정상품 카테고리 선호도 데이터를 통해 사용자간 유산도를 계산하고, 이를 추천하려는 타 상품 카테고리 내의 상품들에 대한 예측 선호도 계산에 활용 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, Yes24 사이트의 서적, 음반, DVD 3개의카테고리 내의 상품을 방문한 웹 패널 데이터를 이용하여 타당성 분석을 수행하였다. 분석 결과, 동일 상품 카테고리 내의 선호도 정보를 가지고 현업 필터링을 수행하는 것보다는 추천 성과가 낮았지만 활용할만한 추천 성과를 보였으며, 활용하는 상품 카테고리와 예측하는 상품 카테고리별로 추천성과가 상이했다.
Recommender systems (RS) that predict a set of items a target user is likely to prefer have been extensively studied in academia and have been aggressively implemented by many companies such as Google, Netflix, eBay, and Amazon. Data imputation alleviates the data sparsity problem occurring in recommender systems by inferring missing ratings and adding them to the original data. In this paper, we point out the drawbacks of existing approaches and make suggestions for data imputation techniques. We also justify our suggestions through extensive experiments.
Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Thus, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'B'. According to the analytic results, the proposed big data analysis algorithm found both expected and unexpected changes in sales volume depending on the characteristics of the fashion goods.
Proceedings of the Korea Information Processing Society Conference
/
2001.10b
/
pp.1167-1170
/
2001
인터넷 중심의 정보화 사회가 되면서 B2C간 또는 B2B간에 상품 정보의 교환이 활발해지고 있다. 본 논문에서는 상품정보 교환을 위한 한 표준으로 이미 제안된 바 있는 XML 기반 통합 상품 표현 모델을 참조하고 구현한다. 이 모델은 다양한 상품정보를 XML에 기반하여 효과적으로 통합하여 표현할 수 있다. 구현은 Java의 컴포넌트 기술인 Java Bean과 EJB를 사용하여 이루어진다. 참조 모델을 사용하면 모든 상품에 공통된 데이터와 본질적인 데이터로 구분하여 기술할 수 있으며, 따라서 상품의 공통된 정보를 통합하여 기술함으로써 데이터의 중복을 피한 수 있다. 논문에서는 참조 모델이 갖는 데이터 중복 제거 효과를 웹 상의 다양한 상품 정보를 대상으로 분석한다.
Since online shopping has become common, people can easily buy fashion goods anytime, anywhere. Therefore, consumers quickly respond to various environmental variables such as weather and sales prices. Therefore, utilizing big data for efficient inventory management has become very important in the fashion industry. In this paper, the changes in sales volume of fashion goods due to changes in temperature is analyzed via the proposed big data analysis algorithm by utilizing actual big data from Korean fashion company 'A'. According to the simulation results, it was confirmed that Bidirectional-LSTM(Bi-LSTM) compared to LSTM(Long Short-Term Memory) takes more simulation time about more than 50%, but the prediction accuracy of non-periodic time series data such as clothing product sales data is the same.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.05a
/
pp.258-265
/
2005
전자상거래의 확산에 따라 인터넷 쇼핑몰에서의 구매활동은 일반적인 현상이 되었다. 그 결과, 유사한 업종이나 업태의 인터넷 쇼핑몰이 범람하게 되었고 업체들 간의 경쟁도 심화되어 차별화된 서비스를 제공하지 않는 업체는 도태되기 쉬운 상황이다. 본 연구에서는 치열한 경쟁환경 하에서 인터넷 쇼핑몰의 차별화된 마케팅 서비스의 수단으로써 이용되고 있는 상품추천시스템의 개선된 모형을 제시하고자 한다. 본 연구에서 제안하는 모형은 전역 최적화 기법 중의 하나인 유전자 알고리즘을 데이터 마이닝의 도구로 활용한 인터넷 쇼핑몰에서의 개인화된 상품추천시스템 모형이다. 유전자 알고리즘은 추출하기가 어려운 소비자의 성향을 데이터를 통해 추출하고 이에 맞는 상품군을 선택할 수 있도록 해주는 최적화 기법으로 상품추천시스템의 추천엔진으로써 유용할 것으로 기대된다. 본 연구에서는 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.
Park, Soobin;Kim, Ina;Choi, Dojin;Park, Jaeyeol;Yoo, Seunghun;Song, Jeo;Bok, Kyoungsoo;Yoo, Jaesoo
Proceedings of the Korea Contents Association Conference
/
2018.05a
/
pp.343-344
/
2018
온라인 쇼핑몰에서 소비자들이 원하는 상품을 노출시켜 정보를 제공하기 위해서는 상품의 트렌드 분석에 대한 연구가 필요하다. 본 논문에서는 대량의 SNS 데이터와 서비스 내 사용자 데이터를 결합하여 보다 효율적인 상품 트렌드 분석 기법을 제안한다. 온라인 소셜 네트워크의 대중화로 소비자들은 시공간에 구애받지 않고 상품에 대한 정보를 SNS로 교류할 수 있다. 제안하는 기법은 이 과정에서 발생한 SNS 데이터와 사용자 성향 데이터에 시간 속성을 고려하여 상품 트렌드를 분석한다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.187-189
/
2005
인터넷 및 분산 환경에서 XML은 애플리케이션 간의 자료 저장 및 자료 교환을 위한 표준으로써, XML 문에 대한 연구가 활발히 진행되고 있다. 따라서 이기종 관계형 데이터베이스 시스템들 간의 메타데이터 및 데이터 교환을 위해 W3C에서 제안한 XML Schema를 사용한다. XML Schema는 평면적 구조인 관계형 데이터베이스 시스템의 메타데이터 및 데이터를 계층적 구조인 XML 문서형식으로 나타낼 수 있는 메커니즘을 가지고 있으며, 다양한 원시 데이터 형식을 지원하여 관계형 데이터베이스 시스템이 제공하는 데이터형식을 충분히 반영할 수 있는 구조를 가지고 있다. 또한 기존의 이질적인 전자상거래 플랫폼을 사용하므로 인해 발생하는 시스템간의 상호 호환 및 운영의 어려움이 있다. 그러나 분산 환경에서 이질적인 특성을 해결하기 위해서 XML을 기반으로 하는 쇼핑몰들의 통합된 정보를 검색할 수 있는 사이트가 등장하고 있어 고객들이 구매하고자 하는 상품에 대한 정보를 보다 쉽게 검색할 수 있도록 각종 쇼핑몰 사이트를 연결하여 통합하는 과정이 진행 중이다. 따라서 상품을 검색할 때 메타데이터를 이용하여 선택에 필요한 정보를 고객에게 제공함으로서 상품을 효율적으로 검색할 수 있다. 따라서 XML기반으로 분산된 이 기증의 시스템들을 온톨로지(Ontology)기반의 메타데이터를 이용하여 상품을 검색할 수 있는 시스템을 제안하고, 온톨로지 기반의 메타데이터 XMDR(eXtended MetaData Registry)을 이용한 상품 검색 시스템을 효율적으로 검색하기 위한 온톨로지 서버 구축에 관한 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.