• Title/Summary/Keyword: 데이터로거시스템

Search Result 33, Processing Time 0.023 seconds

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.

Implementation of an Automated Agricultural Frost Observation System (AAFOS) (농업서리 자동관측 시스템(AAFOS)의 구현)

  • Kyu Rang Kim;Eunsu Jo;Myeong Su Ko;Jung Hyuk Kang;Yunjae Hwang;Yong Hee Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.63-74
    • /
    • 2024
  • In agriculture, frost can be devastating, which is why observation and forecasting are so important. According to a recent report analyzing frost observation data from the Korea Meteorological Administration, despite global warming due to climate change, the late frost date in spring has not been accelerated, and the frequency of frost has not decreased. Therefore, it is important to automate and continuously operate frost observation in risk areas to prevent agricultural frost damage. In the existing frost observation using leaf wetness sensors, there is a problem that the reference voltage value fluctuates over a long period of time due to contamination of the observation sensor or changes in the humidity of the surrounding environment. In this study, a datalogger program was implemented to automatically solve these problems. The established frost observation system can stably and automatically accumulate time-resolved observation data over a long period of time. This data can be utilized in the future for the development of frost diagnosis models using machine learning methods and the production of frost occurrence prediction information for surrounding areas.

Growth of Minuartia laricina, Arenaria juncea, and Corydalis speciose in Field with Various Soil Water Contents (토양 수분 함량에 따른 너도개미자리, 벼룩이울타리, 산괴불주머니의 노지 생육)

  • Gil, Min;Kwon, Hyuck Hwan;Kwon, Young Hyun;Jung, Mi Jin;Kim, Sang Yong;Rhie, Yong Ha
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.344-353
    • /
    • 2020
  • Plants native in Korea have not only ornamental values but also have excellent environmental adaptability, so they can be used as garden plants. Studies on proper volumetric water content (VWC) of substrates have been reported, but many have been conducted in glasshouse conditions where environmental factors were controlled. When considering garden planting, it is necessary to perform the automated irrigation system in outdoor conditions where rainfall occurs at frequent intervals. This research aimed to investigate the VWC suitable for the growth of Minuartia laricina, Arenaria juncea, and Corydalis speciosa in open filed. Sandy soil which consisted of particles of weathered rock was used, and the VWC of 0.15, 0.20, 0.25, and 0.30 ㎥·m-3 was maintained using an automated irrigation system with capacitance soil moisture sensors and a data logger. No significant differences in growth and antioxidant enzymes activity of A. juncea were observed among VWC treatments. However, the survival rate was low at VWC 0.30 ㎥·m-3 treatment, which was the highest soil moisture content. Even considering the efficiency of water use, we recommended that VWC 0.15-0.20 ㎥·m-3 is suitable for the cultivation of A. juncea. Minuartia laricina showed better growth with lower VWC. Because of frequent rainfall in open field, plant volume and survival rate was high even in VWC 0.15 ㎥·m-3 treatment. In C. speciosa, the plant height, number of shoots and lateral shoots, and fresh and dry weight were higher in plants grown in VWC 0.25 ㎥·m-3 as compared with that in the plants grown at 0.15, 0.20, and 0.30 ㎥·m-3. Based on these results, M. laricina needed less water in open filed, and A. juncea and C. speciosa required higher VWC, but excessive water should be avoided.