• Title/Summary/Keyword: 데이터교육

Search Result 2,824, Processing Time 0.027 seconds

The Analysis on Research Trends in Data Education for K-12 students (초·중·고등학생 대상 데이터 교육 연구 동향 분석)

  • Hyunwoo Moon;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.391-394
    • /
    • 2023
  • 본 연구에서는 국내 초·중·고 정보교육에서 이뤄지고 있는 데이터 교육 연구 동향을 분석하여, 향후 데이터 교육의 연구 방향을 제안하고자 하였다. 이를 위해 2015년부터 2023년 5월까지 게재된 국내 논문 중 데이터 교육 관련 논문 45편을 발행 연도, 연구 대상, 연구 분야, 데이터 리터러시 요소별로 분석하였다. 분석 결과 데이터 교육은 초등학생을 대상으로 집중적으로 이뤄지고 있었고 개발 및 적용 관련 연구가 가장 많이 이뤄지고 있었다. 또한 데이터 리터러시의 전 요소를 포함한 연구와 인공지능과 관련된 연구의 비중이 높음을 확인할 수 있었다. 따라서 본 연구를 바탕으로 SW·AI 교육을 위한 데이터 교육이 활발히 이뤄지길 기대한다.

  • PDF

A Study on Educational Data Mining for Public Data Portal through Topic Modeling Method with Latent Dirichlet Allocation (LDA기반 토픽모델링을 활용한 공공데이터 기반의 교육용 데이터마이닝 연구)

  • Seungki Shin
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.439-448
    • /
    • 2022
  • This study aims to search for education-related datasets provided by public data portals and examine what data types are constructed through classification using topic modeling methods. Regarding the data of the public data portal, 3,072 cases of file data in the education field were collected based on the classification system. Text mining analysis was performed using the LDA-based topic modeling method with stopword processing and data pre-processing for each dataset. Program information and student-supporting notifications were usually provided in the pre-classified dataset for education from the data portal. On the other hand, the characteristics of educational programs and supporting information for the disabled, parents, the elderly, and children through the perspective of lifelong education were generally indicated in the dataset collected by searching for education. The results of data analysis through this study show that providing sufficient educational information through the public data portal would be better to help the students' data science-based decision-making and problem-solving skills.

An Enhanced DBSCAN Algorithm to Consider Various Density Distributions for Educational Data (교육데이터 정제를 위한 다양한 밀도분포를 고려한 개선된 DBSCAN 알고리즘)

  • Kim, Jeong-Hun;Nasridinov, Aziz
    • Proceedings of The KACE
    • /
    • 2018.01a
    • /
    • pp.41-44
    • /
    • 2018
  • 교육데이터마이닝은 다양한 교육 환경에서 생성되는 막대한 양의 데이터를 활용하여 학습자들의 학습 유형, 학습 진도를 분석, 예측하고 교육 성취를 효과적으로 향상시키는 것을 목적으로 한다. 효과적인 교육데이터마이닝 결과를 얻기 위해서는 교육데이터에 대한 정제 과정이 필요하며 DBSCAN 클러스터링을 통해 교육데이터에 포함된 노이즈 데이터를 제거하고 생성된 각 클러스터에서 동일한 비율로 데이터를 추출함으로써 편향되지 않은 표본 데이터를 생성할 수 있다. 하지만 DBSCAN은 두 개의 전역 매개변수에 의해 다양한 밀도분포를 가지는 클러스터를 생성할 수 없다는 문제점이 있으며 이는 교육 데이터를 정제함에 있어 치명적인 문제점이 될 수 있다. 본 논문에서는 DBSCAN의 문제점을 개선하고 클러스터링 정확도를 향상시키기 위해 고정된 매개변수를 사용하지 않고 각 밀도분포에 대해 최적의 입력 매개변수를 결정함으로써 다양한 밀도분포를 가지는 클러스터들을 효과적으로 생성하는 C-DBSCAN을 제안한다.

  • PDF

A Content Analysis of Research Data Management Training Programs at the University Libraries in North America: Focusing on Data Literacy Competencies (북미 대학도서관 연구데이터 관리 교육 프로그램 내용 분석: 데이터 리터러시 세부 역량을 중심으로)

  • Kim, Jihyun
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.4
    • /
    • pp.7-36
    • /
    • 2018
  • This study aimed to analyze the content of Records Data Management (RDM) training programs provided by 51 out of 121 university libraries in North America that implemented RDM services, and to provide implications from the results. For the content analysis, 317 titles of classroom training programs and 42 headings at the highest level from the tables of content of online tutorials were collected and coded based on 12 data literacy competencies identified from previous studies. Among classroom training programs, those regarding data processing and analysis competency were offered the most. The highest number of the libraries provided classroom training programs in relation to data management and organization competency. The third most classroom training programs dealt with data visualization and representation competency. However, each of the remaining 9 competencies was covered by only a few classroom training programs, and this implied that classroom training programs focused on the particular data literacy competencies. There were five university libraries that developed and provided their own online tutorials. The analysis of the headings showed that the competencies of data preservation, ethics and data citation, and data management and organization were mainly covered and the difference existed in the competencies stressed by the classroom training programs. For effective RDM training program, it is necessary to understand and support the education of data literacy competencies that researchers need to draw research results, in addition to competencies that university librarians traditionally have taught and emphasized. It is also needed to develop educational resources that support continuing education for the librarians involved in RDM services.

A Study on Elementary Education Examples for Data Science using Entry (엔트리를 활용한 초등 데이터 과학 교육 사례 연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.473-481
    • /
    • 2020
  • Data science starts with small data analysis and includes machine learning and deep learning for big data analysis. Data science is a core area of artificial intelligence technology and should be systematically reflected in the school curriculum. For data science education, The Entry also provides a data analysis tool for elementary education. In a big data analysis, data samples are extracted and analysis results are interpreted through statistical guesses and judgments. In this paper, the big data analysis area that requires statistical knowledge is excluded from the elementary area, and data science education examples focusing on the elementary area are proposed. To this end, the general data science education stage was explained first, and the elementary data science education stage was newly proposed. After that, an example of comparing values of data variables and an example of analyzing correlations between data variables were proposed with public small data provided by Entry, according to the elementary data science education stage. By using these Entry data-analysis examples proposed in this paper, it is possible to provide data science convergence education in elementary school, with given data generated from various subjects. In addition, data science educational materials combined with text, audio and video recognition AI tools can be developed by using the Entry.

A Study on Perception of Educational Big Data Utilization and Current State of Data Utilization of Officials of the Provicial Office of Education (교육청 공무원의 데이터 활용실태 및 교육 빅데이터 활용에 관한 인식 연구 - A도교육청을 중심으로)

  • Shin, Jong-Ho
    • Journal of Digital Convergence
    • /
    • v.18 no.9
    • /
    • pp.39-47
    • /
    • 2020
  • This study was conducted with the aim of investigating the actual state of data utilization and the perception of big data utilization by officials of the provincial Office of Education and to derive implications for the establishment of strategies for big data utilization. An online survey of 440 people was conducted. As a result, the types and sources of data used for work varied, and data collection and refining were the most difficult parts. The infrastructure for data utilization was insufficient and the most necessary factor. The purpose of big data utilization was related to the establishment of educational policy agenda.

Development and Validation of Data Science Education Instructional Model (데이터 과학 교육을 위한 수업모형 개발 및 타당성 검증)

  • Bongchul Kim;Bomsol Kim;Jonghoon Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.417-425
    • /
    • 2022
  • The 'Comprehensive Plan for Nurturing Digital Talents' reported at the Cabinet meeting of the Ministry of Education in August 2022 focuses on qualitative and quantitative expansion of informatics education centered on SW, AI education. With the advent of the era of artificial intelligence, data science education is also drawing attention as a field of informatics education. Data science is originally a field where various studies are fused, and advanced technologies are being used for data analysis, modeling, and machine learning. This study devised a draft of the instructional model of data science education through literature research and analysis of previous studies, and developed a final instructional model through usability test and expert validation.

Development of Education Programs for Sports Clubs using Sports Data (운동부를 위한 스포츠 데이터 활용 교육 프로그램 개발)

  • Kim, Semin;Woo, SungHee
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.435-442
    • /
    • 2021
  • In this study, a program was developed to educate the students and athletes of the school sports team on the overall knowledge of using sports data. Accordingly, existing research and requirements for using sports data were analyzed, a learning plan was designed, and an education program was developed in a step-by-step manner according to the educational requirements. In addition, as there is no research yet on data science education for school athletics and adult sports officials in existing studies, this study includes the problem definition, data collection, data pre-processing, and data analysis, as well as the additional stages of data visualization and simulation analysis. It is expected that the sports industry's interest in sports data will increase through this study.

A Case Study of Basic Data Science Education using Public Big Data Collection and Spreadsheets for Teacher Education (교사교육을 위한 공공 빅데이터 수집 및 스프레드시트 활용 기초 데이터과학 교육 사례 연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.3
    • /
    • pp.459-469
    • /
    • 2021
  • In this paper, a case study of basic data science practice education for field teachers and pre-service teachers was studied. In this paper, for basic data science education, spreadsheet software was used as a data collection and analysis tool. After that, we trained on statistics for data processing, predictive hypothesis, and predictive model verification. In addition, an educational case for collecting and processing thousands of public big data and verifying the population prediction hypothesis and prediction model was proposed. A 34-hour, 17-week curriculum using a spreadsheet tool was presented with the contents of such basic education in data science. As a tool for data collection, processing, and analysis, unlike Python, spreadsheets do not have the burden of learning program- ming languages and data structures, and have the advantage of visually learning theories of processing and anal- ysis of qualitative and quantitative data. As a result of this educational case study, three predictive hypothesis test cases were presented and analyzed. First, quantitative public data were collected to verify the hypothesis of predicting the difference in the mean value for each group of the population. Second, by collecting qualitative public data, the hypothesis of predicting the association within the qualitative data of the population was verified. Third, by collecting quantitative public data, the regression prediction model was verified according to the hypothesis of correlation prediction within the quantitative data of the population. And through the satisfaction analysis of pre-service and field teachers, the effectiveness of this education case in data science education was analyzed.

Data Literacy Education in Design Curriculum of Higher Education Focused on Development of Design-Data Convergence Curriculum (디자인 교과과정에서의 데이터 문해력 교육에 관한 연구 -디자인-데이터 융합 교과 개발 사례를 중심으로)

  • Lee, Hyun Jhin
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.685-696
    • /
    • 2022
  • This study explores convergence curriculum for design and data science, and applies data science knowledge on undergraduate design classes for designer's data literacy. First, related studies about data literacy education for non-data science major's, and data driven design project cases are explored, then design competency and data competency based on NCS are studied. Then this study developed 3 step design-data convergence curriculum model for designers' data literacy. The curriculum model is applied on case study classes, which are Big data and UX design(2) classes. The learning results and student's feedback of the case study classes are collected and analyzed to prove the design-data convergence curriculum, and the results provide findings and implications of the design-data convergence class case study.