• 제목/요약/키워드: 데이타 마이닝

검색결과 106건 처리시간 0.023초

데이타 웨어하우스 환경에서의 설명기반 데이타 마이닝 (Explanation-based Data Mining in Data Warehouse)

  • 김현수;이창호
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.115-123
    • /
    • 1999
  • 산업계 전반에 걸친 오랜 정보시스템 운용의 결과로 대용량의 데이타들이 축적되고 있다. 이러한 데이타로부터 유용한 지식을 추출하기 위해 여러 가지 데이타 마이닝 기법들이 연구되어왔다. 특히 데이타 웨어하우스의 등장은 이러한 데이타 마이닝에 있어 필요한 데이타 제공 환경을 제공해 주고 있다. 그러나 전문가의 적절한 판단과 해석을 거치지 않은 데이타 마이닝의 결과는 당연한 사실이거나, 사실과 다른 가짜이거나 또는 관련성이 없는(trivial, spurious and irrelevant) 내용만 무수히 쏟아낼 수 있다. 그러므로 데이타 마이닝의 결과가 비록 통계적 유의성을 가진다 하더라고 그 정당성과 유용성에 대한 검증과정과 방법론의 정립이 필요하다. 데이타 마이닝의 가장 어려운 점은 귀납적 오류를 없애기 위해 사람이 직접 그 결과를 해석하고 판단하며 아울러 새로운 탐색 방향을 제시해야 한다는 것이다. 본 논문의 목적은 이러한 데이타 마이닝에서 추출된 결과를 검증하고 아울러 새로운 지식 탐색 방향을 제시하는 방법론을 정립하는데 있다. 본 논문에서는 데이타 마이닝 기법 중 연관규칙탐사로 얻어진 결과를 설명가능성 여부의 판단을 통해 검증하는 기법을 제안하며, 이를 통해 얻어진 검증된 지식을 토대로 일반화를 통한 새로운 가설을 생성하여 데이타 웨어하우스로부터 연관규칙을 검증하는 일련의 아키텍쳐(architecture)를 제시하고자 한다. 먼저 데이타 마이닝 결과에 대한 설명의 필요성을 제시하고, 데이타 웨어하우스와 데이타 마이닝 기법들에 대한 간략한 설명과 연관규칙탐사에 대한 정의 및 방법을 보이고, 대상 영역에 대한 데이타 웨어하우스의 스키마를 보였다. 다음으로 도메인 지식(domain knowledge)과 연관규칙탐사를 통해 얻어진 결과를 표현하기 위한 지식표현 방법으로 Relational predicate Logic을 제안하였다. 연관규칙탐사로 얻어진 결과를 설명하기 위한 방법으로는 연관규칙탐사로 얻어진 연관규칙에 대해 Relational Predicate Logic으로 표현된 도메인 지식으로서 설명됨을 보이게 한다. 또한 이러한 설명(explanation)을 토대로 검증된 지식을 일반화하여 새로운 가설을 연역적으로 생성하고 이를 연관규칙탐사론 통해 검증한 후 새로운 지식을 얻는 반복적인 Explanation-based Data Mining Architecture를 제시하였다. 본 연구의 의의로는 데이타 마이닝을 통한 귀납적 지식생성에 있어 귀납적 오류의 발생을 고메인 지식을 통해 설명가능 함을 보임으로 검증하고 아울러 이러한 설명을 통해 연역적으로 새로운 가설지식을 생성시켜 이를 가설검증방식으로 검증함으로써 귀납적 접근과 연역적 접근의 통합 데이타 마이닝 접근을 제시하였다는데 있다.

  • PDF

시간 데이타마이닝 프레임워크 (Temporal Data Mining Framework)

  • 이준욱;이용준;류근호
    • 정보처리학회논문지D
    • /
    • 제9D권3호
    • /
    • pp.365-380
    • /
    • 2002
  • 시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 "시간값을 가진 대용량 데이타로부터 이전에 잘 알려지지는 않았지만, 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술"로 정의된다. 시간 지식이란 주기적 패턴, 캘린더 패턴, 경향 등과 같이 시간 의미와 시간 관계를 가진 지식을 말한다. 실세계에서는 환자의 병력, 상품 구매 이력, 웹 로그 등과 같은 다양한 시간 데이타가 존재하며 이로부터 여러 형태의 유용한 시간 지식을 찾아낼 수 있다. 데이타마이닝에 대한 연구가 진행되면서 순차 패턴, 유사 시계열 탐사, 주기적 연관규칙 탐사 등과 같이 시간 지식을 탐사하고자 하는 시간 데이타마이닝에 대한 부분적인 연구가 수행되었다. 그러나 기존 연구는 단순히 데이타의 발생 순서 및 유사한 패턴을 찾아내는데 중점을 두고 있어 데이타가 포함하고 있는 시간 의미와 시간 관계를 탐사하는데 부족하며, 시간 지식의 전체적인 측면보다는 연관 규칙과 같은 일부분만을 다루고 있다는 문제점을 가지고 있다. 따라서 이 논문에서는 시간 데이타마이닝에 대한 체계적인 연구를 위하여 시간 데이타마이닝에 대한 기존 연구 내용과 해결해야 할 문제점을 분석하고 이를 바탕으로 전체적인 프레임워크를 제시하였다. 또한 그 구현 방안 및 적용평가를 수행하였다. 프레임워크에서는 시간 데이타마이닝 모델을 제안하고, 이를 바탕으로 시간 데이타마이닝 질의어와 시간 지식을 탐사할 수 있는 시간 데이타마이닝 시스템을 설계하였다.

대규모 궤적 데이타를 위한 데이타 마이닝 툴 (A Data Mining Tool for Massive Trajectory Data)

  • 이재길
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권3호
    • /
    • pp.145-153
    • /
    • 2009
  • 궤적(trajectory) 데이타는 실세계 어디에서든지 쉽게 찾아볼 수 있다. 최근 들어, 위성, 센서, RFID, 비디오 및 무선 통신 기술의 발전으로 말미암아 이동 객체를 체계적으로 추적하고, 많은 양의 궤적데이타를 수집할 수 있게 되었다. 이에 따라, 궤적 데이타의 분석에 대한 필요성이 점차 증대되고 있다. 본 논문에서는 대규모 궤적 데이타를 위한 마이닝 툴을 개발한다. 본 마이닝 툴에서는 가장 널리 사용되는 마이닝 연산인 집단화(clustering), 분류(classification), 이상치 발견(outlier detection)을 제공한다. 궤적 집단화는 공통적인 이동 패턴을 발견하며, 궤적 분류는 궤적에 기반하여 이동 객체의 범주를 예측하며, 궤적 이상치 발견은 나머지 궤적들과 크게 다르거나 일관적이지 않은 궤적을 발견한다. 본 마이닝 툴의 가장 큰 장점은 데이타 마이닝 도중에 부분 궤적 정보를 활용한다는 점이다. 본 마이닝 툴의 우수성은 다양한 실제 궤적 데이타 셋을 사용하여 입증되었다. 본 논문의 결과로 궤적 데이타 마이닝을 위한 실용적인 소프트웨어를 개발하였고 많은 실제 응용에 적용될 수 있을 것이라 사료된다.

다차원 데이터큐브를 이용한 멀티미디어 데이터 마이닝 연구 (A Study on the MultiMedia Data Mining using Multi-dimensional DataCube)

  • 김진옥;황대준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (1)
    • /
    • pp.151-153
    • /
    • 2001
  • 멀티미디어 데이터의 증가와 마이닝 기술의 발전으로 인해 멀티미디어 마이닝에 대한 관심이 증가하고 있다. 본 논문에서는 내용기반의 정보검색 기술과 다차원 다중 데이터큐브 구축기술을 통해 멀터미디어데이타의 마이닝을 구현하는 시스템에 대해 제안한다. 제안 시스템은 멀티미디어 데이터에 내용기반의 정보추출 시스템을 적용하여 성분백터를 추출하고 이를 메타데이타로 한 데이스베이스를 구축한다. 그리고 데이타베이스로부터 지식을 마이닝할 수 있도록 다차원 데이터큐브를 구축하여 빠른 데이터검색과 마이닝결과을 이용자에게 보여주는 모듈로 구성된다. 다차원 데이터큐브는 다중 어레이 구조로써 다차원 데이터를 저장하고, 저장된 여러 데이터 레벨 정보에서 가장 중요한 주제를 통합 생성하여 효율적으로 처리하므로 멀티미디어 데이터를 마이닝하는데 효과적인 방법이다. 또만 다차원데이타큐브를 다중으로 생성하는 방법은 데이터 마이닝 속도를 높이는데 효율적이다.

  • PDF

사이트의 접속 정보 유출이 없는 네트워크 트래픽 데이타에 대한 순차 패턴 마이닝 (Privacy Preserving Sequential Patterns Mining for Network Traffic Data)

  • 김승우;박상현;원정임
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권7호
    • /
    • pp.741-753
    • /
    • 2006
  • 네트워크가 급속도로 발달함에 따라, 네트워크 상에서 발생되는 트래픽 데이타를 대상으로 마이닝 기법을 적용하려는 연구가 활발히 진행되고 있다. 그러나 네트워크 트래픽 데이타를 대상으로 수행되는 마이닝 작업은 네트워크 사용자의 프라이버시를 침해할 여지가 있다는 문제점이 있다. 본 논문에서는 대용량 네트워크 트래픽 데이타를 대상으로 사이트의 프라이버시를 보호하면서 마이닝 결과의 정확성과 실용성을 보장할 수 있는 효율적인 순차 패턴 마이닝 기법을 제안한다. 제안된 기법은, N-저장소 서버 모델과 정보 유지 대체 기법을 사용함으로써, 각 사이트에 저장되어 있는 네트워크 데이타를 공개하지 않은 상태에서 순차 패턴 마이닝을 수행한다. 또한 후보 패턴의 발생 여부를 신속히 결정할 수 있는 메타 테이블을 유지하여 전체 마이닝 과정이 효율적으로 진행되도록 한다. 네트워크 상에서 발생한 실제 트래픽 데이타를 대상으로 다양한 실험을 수행한 결과 제안된 기법의 효율성과 정확성을 확인할 수 있었다.

e-Business에서의 BI지원 데이타마이닝 시스템 (A Data Mining System for Supporting of Business Intelligence in e-Business)

  • 이준욱;백옥현;류근호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권5호
    • /
    • pp.489-500
    • /
    • 2002
  • 비즈니스 인텔리젼스에 대한 관심이 증대되면서 핵심 기술로써 데이타마이닝의 적용이 증대되고 있다. e-Business에서의 비즈니스 인텔리젼스를 지원하기 위해 다양한 마이닝 연산을 통합적으로 제공하는 마이닝 시스템은 데이타베이스 시스템과 유연하게 통합될 수 있어야 하며, 또한 다양한 비즈니스 응용에서의 마케팅 프로세스를 쉽게 구현할 수 있는 인터페이스를 제공하여야 한다. 이 연구에서는 e-Business영역에서의 BI를 지원하기 위해 데이타마이닝 기법을 통합적으로 제공하는 시스템으로써 EC-DaMiner 시스템을 설계, 구현하였다. 데이타마이닝 시스템은 기존의 데이타베이스 시스템과의 표준적인 인터페이스를 통하여 연동될 수 있도록 하였다. 아울러 비즈니스 어플리케이션들은 마이닝 질의어인 MQL을 통하여 규칙을 탐사하고 탐사된 규칙을 기존의 마케팅 데이타베이스에 모델화하여 반영함으로써 마케팅 전략의 구현을 용이하게 하였다.

gCRM과 공간데이타마이닝 (gCRM and Spatial Data Mining)

  • 황정래;이기준
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.38-44
    • /
    • 2002
  • 고객관계관리(CRM)나 마케팅과 같은 경영방식에서도 대용량의 공간 데이터베이스를 사용하는 지리정보시스템(GIS)과 같은 응용분야를 접목하고 있다. gCRM은 지리정보시스템과 고객관계관리를 결합한 것으로, 이러한 실정을 단적으로 보여 주고 있는 경영방식이다. gCRM은 대용량의 데이터베이스로부터 관심 있는 분야를 찾아내고 분석하게 된다. 그러기 위해서는 데이터마이닝이라는 기술이 필요하다. 하지만, gCRM은 일반적인 데이터베이스뿐만 아니라 공간 데이터베이스 역시 많이 사용되어진다. 이러한 공간데이터베이스로부터 관심 있는 부분이나 관계 그리고 특성 등을 찾아내기 위해서는 공간데이타마이닝이 요구된다. 본 논문에서는 gCRM 솔루션들의 기능을 중심으로 다양한 공간데이타마이닝 기법과 어떠한 관계가 있는지를 살펴봄으로써 gCRM과 공간데이타마이닝이 접목할 수 있는 부분에 대하여 정리하였다.

  • PDF

시계열 예측에 대한 의사결정자의 인지 유형과 생리적 반응 특성의 상관분석을 위한 데이터 마이닝 접근방법 (Data Mining Approach to Analyzing the Effect of Cognitive Style and Physiological Phenomena in Judgemental Time Series Forecasting)

  • 송병호;박흥국
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1999년도 추계학술대회 논문집
    • /
    • pp.47-52
    • /
    • 1999
  • 데이타 마이닝이란 축적된 방대한 양의 실제 데이타로부터 이전에는 알지 못했던, 숨겨진 임의의 규칙성들을 비전통적인 방식으로 발견해 내는 작업을 말한다. 많은 데이타로부터 무엇인가 흥미로운 경향이나 패턴을 발굴해 내는 것이 데이타 마이닝의 목적이다. 본 연구에서는 다양한 측정값으로 표현되는 \circled1 인지 유형 데이타와, \circled2 생리적 반응 특성 데이터가 \circled3 직관적 예측의 성과에 미치는 영향을 데이타 마이닝 기술을 이용하여 분석함으로써 존재하는 규칙적인 관련성을 탐사하였다. 현재까지 분석한 바로는 첫째, 분석적인 사람이 직관적인 사람보다 예측이 더 정확한 경향이 있었다. 둘째, 실험 전과 실험중 간의 뇌파증가율이 높거나 뇌파량이 적으면 분석적인 사람일 가능성이 많았다. 셋째, 분석적인 사람은 실험 전에 뇌파량이 적을수록 더 정확해지며, 직관적인 사람은 실험전에 뇌파량이 많을수록 더 정확해지는 것으로 관측되었다.

  • PDF

상용 데이타 마이닝 도구를 사용한 정량적 연관규칙 마이닝 (Mining Quantitative Association Rules using Commercial Data Mining Tools)

  • 강공미;문양세;최훈영;김진호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권2호
    • /
    • pp.97-111
    • /
    • 2008
  • 상용 데이타 마이닝 도구에서는 기본적으로 이진 속성에 대한 연관규칙 마이닝만을 지원한다. 그러나, 일반적인 트랜잭션 데이타베이스는 이진 속성 뿐 아니라 정량적 속성을 포함한다. 이에 따라, 본 논문에서는 상용 데이타 마이닝 도구를 사용하여 정량적 연관규칙을 마이닝하는 체계적인 접근법을 제안한다. 이를 위해, 우선 상용 데이타 마이닝 도구를 사용하여 정량적 연관규칙을 찾아내기 위한 전체적인 프레임워크를 제안한다. 제안한 프레임워크는 정량적 속성을 이진 속성으로 변환하는 전처리 과정과 마이닝된 이진 연관규칙을 다시 정량적 연관규칙으로 변환하는 후처리 과정으로 구성된다. 다음으로, 전처리 과정을 위한 구간 분할의 개념을 제시하고, 기존의 평균 및 중앙치 기반 양분할 기법과 동일 너비 및 동일 깊이 기반 다분할 기법을 구간 분할의 개념으로 정형적으로 재정의한다. 그런데, 이들 기존 분할 기법은 속성 값의 분포를 고려하지 않은 문제점이 있다. 본 논문에서는 이를 해결하기 위하여 표준편차 최소화 기법을 제안한다. 표준편차 최소화 기법은 이웃한 속성 값의 표준편차 변화가 작다면 동일한 구간에 포함시키고, 표준편차 변화가 크다면 다른 구간으로 분할하는 매우 직관적인 분할 기법이다. 또한, 후처리 과정으로는 이진 연관규칙들을 통합하고 이를 다시 정량적 연관규칙으로 변환하는 방법을 제안한다. 마지막으로, 다양한 실험을 통하여 제안한 프레임워크가 바르게 동작함을 보이고, 표준편차 최소화 기법이 다른 기법에 비하여 우수함을 입증한다. 이 같은 결과를 볼 때, 제안한 프레임워크는 일반 사용자가 상용 데이타 마아닝 도구를 사용하여 정량적 연간규칙을 쉽게 마이닝 할 수 있는 매우 실용적인 접근법이라 생각한다.

캘린더 패턴 기반의 시간 연관적 분류 기법 (Temporal Associative Classification based on Calendar Patterns)

  • 이헌규;노기용;서성보;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권6호
    • /
    • pp.567-584
    • /
    • 2005
  • 시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 시간 속성을 가진 데이타로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술이다. 대표적 데이타마이닝 기법인 연관규칙과 분류기법은 실세계의 여러 응용분야에서 사용된다. 그러나 대부분의 데이타가 시간 속성을 포함함에도 불구하고 기존의 기법들은 시간 속성을 고려하지 않고 주로 정적인 데이타에 대한 지식 탐사만이 진행되었다. 그리고 시간 데이타에 대한 데이타마이닝 연구들은 데이타의 발생시점과 시간 제약조건을 추가한 지식 탐사에 중점을 두고 있어 데이타가 포함한 시간 의미나 시간 관계를 탐사하는데 부족하였다. 이 논문에서는 시간 클래스 연관규칙에 기반한 시간 연관적 분류기법을 제안한다. 이 기법은 분류규칙 생성을 위해서 연관적 분류에 시간 차원을 포함하여 확장한 시간 클래스 연관규칙에 의해 탐사된 규칙들을 적용하는 것이다. 그러므로 이 기법은 기존의 분류 기법들에 비해 더 유용한 지식탐사가 가능하다.