시간에 따라 변화하는 사건을 기록하는 시간 데이타베이스에서는 사건을 저장할 때 시간 속성도 같이 저장한다. 최근에는 시간 데이타베이스의 속성을 고려하여 집지 함수와 같이 기존의 연산자를 확장하여 시간 데이타베이스에서 효율적으로 처리하려는 연구가 활발하게 진행되어 왔다. 사용자들은 종종 여러 애트리뷰트에 가중치를 두고 그 가중치 순서대로 결과가 보여지는 순위 질의를 실행한다. 기존의 순위 질의 개념을 그대로 시간 지인 데이타메이스에서 사용할 수 없다. 따라서 본 논문에서는 기존의 순위 질의에 시간 개념을 확장한 시간 순위 질의를 정의한다. 또한 시간 순위 질의 처리방법을 제 시 한다.
이미지 데이타베이스 분야에 대한 다양한 기법들 가운데, 내용 기반 영상 검색 기법 (Content Based Image Retrieval)은 대용량의 영상을 효율적으로 검색하고 탐색할 수 있도록 한다. 기존의 내용 기반 영상 검색 시스템은 사용자가 입력한 질의 이미지에서 낮은 레벨의 특성 (low-level feature)을 추출하고 그에 기반하여 데이타베이스로부터 유사한 영상을 검색한다. 하지만 컴퓨터에서 사용하는 낮은 레벨의 특성은 실제 인간이 영상을 인식하는 방법과 다르게 영상을 인식한다는 단점이 있다. 이러한 단점을 보완하기 위하여 각 특성에 대한 가중치를 적합성 피드백 (relevance feedback)을 통하여 재조정하는 기법이 개발되었다. 기존의 특성 가중치 조정 (feature re-weighting) 기법은 모든 영상에 대하여 특성은 항상 고정된 길이의 벡터 데이타로 표현된다고 가정한다, 이러한 가정을 전제로 하여 기존의 기법은 특성 표현 (feature representation)의 각 부분을 n 차원 공간의 각 축에 할당한다. 하지만 특성 표현 기법의 발전에 따라 가변적인 길이의 벡터로 표현되는 특성이 출현하였으며 이로 인하여 기존의 제한된 길이의 벡터로 표현되는 특성 표현에 기반한 특성 가중치 조정 기법의 유효성은 감소하게 되었다. 본 논문에서는 가변적인 크기의 벡터로 표현되는 특성에 대해서도 특성 가중치를 효과적으로 조정할 수 있는 기법을 제안한다. 본 기법은 특성에 기반하여 계산된 질의 영상과 데이타베이스 내부의 영상간의 거리와 양방향 신뢰구간을 이용하여 특성 가중치를 조정한다. 이 때 각 특성의 거리 계산 방법에 대해서는 제한을 두지 않는다. 또한 각 특성의 표현에 있어서도 고정적인 크기뿐만이 아니라 가변적인 크기의 데이타 역시 사용할 수 있도록 한다. 본 논문에서는 실험을 통하여 제안한 기법의 유효성을 입증하였으며, 다른 연구 결과와의 비교를 통하여 제안한 기법의 성능이 보다 우수함을 보였다.
투영 클러스터링은 고 차원 데이타집합에서 서로 다른 부분공간들에서 클러스터들을 찾으려고 모색한다. 사용자가 출력 클러스터들의 개수와 투영 클러스터들의 부분공간의 평균 차원수를 지정하지 않아도, 거의 최적인 투영 클러스터들을 탐사해내는 알고리즘을 제안한다. 클러스터링의 각 단계에서 알고리즘의 목적 함수는 투영 에너지, 품질, 그리고 이상치들의 개수를 계산한다. 클러스터링에서 투영 에너지를 최소화하고 품질을 최대화하기 위하여, 전체 차원의 표준 편차들을 비교함으로 입력 점들의 밀도 상에서 각 클러스터의 최선의 부분영역을 찾기 시작한다. 부분공간의 각 차원에 대한 가중치 요소가 투영 거리 측정에서 확률 오차를 없애기 위하여 사용된다. 제안된 알고리즘이 투영 클러스터들을 정확하게 발견해내고 대 용량의 데이타 집합에서 비례확장성을 갖는다는 것을 여러 가지 실험으로 보여준다.
고정 싱크 로드를 갖는 무선 센서 네트워크에서 싱크 주변 무선 센서 노드들은 배터리 에너지가 급속히 소모되는 문제를 발생시킨다. 이를 해결하기 위하여 모바일 싱크를 사용하여 데이타 수집을 하므로 무선 센서 노드들의 에너지 소모를 분산시키는 기법들에 대한 연구가 진행되고 있다. 그러나, 모바일 싱크는 움직이는 특성을 가지고 있으므로 모바일 싱크를 사용할 경우에는 각 센서노드들로부터 균등한 양의 데이타를 수집하기 위한 데이타 수집 스케줄링이 필요하다. 실시간적 특성을 만족시켜야하는 무선 센서 네트워크의 응용 환경에서는 균등치 못한 데이타 수집은 긴급한 사건들에 대한 처리가 가능하지 않게 한다. 본 논문에서는 모바일 싱크를 이용한 센서 네트워크에서 무선 센서 노드들로부터 균등한 데이타 수집을 위한 데이타 가중치 기반 스케줄링 기법을 제안한다 제안된 기법은 센서 노드들이 모바일 싱크와의 통신범위 안에 남아있을 수 있는 시간과 각각의 무선 센서 노드들이 모바일 싱크에게 전송한 데이터양을 스케줄링의 기준으로 사용한다. 실험을 통하여 모바일 싱크를 갖는 무선 센서 네트워크에서 제안된 기법과 기존의 데이타 수집 방법들의 성능을 평가한다. 실험 결과는 제안된 기법이 무선 센서 노드들로 부터의 데이타 수집에 있어서 가장 균등 데이타 수집을 수행함을 보인다.
본 논문에서는 PET-CT 뇌 영상융합을 위해 가우시안 가중치 거리지도를 이용한 표면기반 영상정합을 제안한다. 제안방법은 중요 세 단계로 표면 특징점 추출, 가우시안 가중치 거리지도 생성, 가중치기반 유사도 평가로 구성된다. 첫째, PET 영상과 CT 영상에서 삼차원 역 영역성장법을 이용하여 머리영역을 분할하고 머리 영역과 같이 분할된 잡음 영역을 영역성장법기반 레이블링을 이용한 영역 크기 비교를 통해 제거한 후 선명화 처리 필터를 적용하여 머리 표면 특징점을 추출한다. 둘째, CT 영상에서 추출한 표면 특징점에 가우시안 가중치 거리지도를 생성하여 큰 변위에서도 최적의 위치로 견고하게 수렴하도록 한다. 셋째, 가중치기반 상호상관관계는 PET 영상에서 추출한 표면 특징점과 대응되는 CT 영상의 가우시안 가중치 거리지도를 이용하여 최적 위치를 탐색한다. 본 논문에서는 제안방법의 정확성과 견고성 검사를 위해 인공데이타를 이용하고, 수행시간과 육안평가를 위해 임상데이타를 이용한다. 정확성 검사는 임의로 변환된 인공데이타에 제안방법을 적용한 후 추출된 최적화 변환벡터와의 오차를 제곱근평균제곱오차를 이용하여 평가한다. 견고성 검사는 큰 변위와 잡음을 가지는 인공데이타에서 가중치기반 상호상관관계가 최적의 위치에서 최대를 이루는지를 평가한다 실험 결과 제안한 표면기반 영상정합이 기존 표면기반 영상정합보다 정확하고 견고하게 수렴됨을 알 수 있다.
단일 볼륨랜더링과 다중 볼륨랜더링의 가장 큰 차이점은 데이타 혼합방법으로 본 논문에서는 특정 볼륨을 표면수준에 따라 선택적으로 빠르게 가시화하는 선택적 랜더링방법과 다중 볼륨을 위한 데이타 혼합방법을 제안한다. 선택적 랜더링방법은 관심부위를 구성하는 외곽선으로부터 최소거리를 결정하는 거리변환을 통하여 거리변환볼륨을 생성하고 이를 랜더링하는 방법이며, 다중 볼륨을 위한 데이타 혼합방 법은 명암도 가중치 방법, 불투병도 가중치 방법, 깊이 정보를 고려한 불투병도 가중치 방법을 이용하여 여러 개의 볼륨을 혼합하는 방법이다. 실험 결과로는 EBCT 가슴부위 영상에 선택적 랜더링방법을 적용하여 생성한 좌심실, 우심실 영상을 제시하며, 가슴부위 볼륨과 좌심실 볼륨 또는 우심실 볼륨에 세 가지 다른 혼합방법을 적용하여 얻은 혼합 영상을 제시한다. 본 제안방법은 거리변환볼륨을 사용함으로써 표면수준에 따라 특정 볼륨을 가시화하고 가시화 시간을 가속화시킬 수 있으며, 데이타 혼합을 통하여 단일 볼륨랜더링 한계를 극복하여 동일 공간 상에 다중 영상을 함께 표현함으로써 복잡한 형태로부터 관심부위의 형태와 상대적 관계를 효과적으로 나타낼 수 있다.
본 연구는 대용량 훈련 데이타를 사용하는 얼굴 검출 분류기의 학습과정에서 새로운 데이터의 추가 학습이 가능한 새로운 방법을 제안한다. 추가되는 데이타로부터 새로운 정보를 학습하여 이미 습득된 기존의 지식을 갱신하는 것이 점진적 학습의 목표이다. 이러한 학습 기법에 기반한 분류기의 설계에서는 최종 분류기가 전체 훈련 데이타 집합의 특성을 반영하는 것이 매우 중요한 문제이다. 제안하는 알고리즘은 최적화된 최종 분류기 획득을 위하여 훈련 집합의 전역적인 특성을 대표하는 검증집합을 생성하고, 이 집단 내에서의 분류성능을 기준으로 중간단계 분류기들의 가중치를 결정한다. 각 중간단계 분류기는 개변 데이타 집합의 학습 결과로써 가중치 기반 결합 방식에 의해 최종 분류기로 구성된다. 반복적인 실험을 통해, 제안한 알고리즘을 사용하여 학습한 얼굴 검출 분류기의 성능이 AdaBoost 및 Learn++기반의 분류기보다 우수한 검출 성능을 보임을 확인하였다.
최근접 이웃(k nearest neighbor) 알고리즘은 새로운 개체의 목표값을 예측하기 위하여 과거의 유사한 데이타를 이용하여 그 값을 예측하는 것이다. 이 방법은 기계학습의 여러 분야에서 그 유용성을 검증받아 널리 사용되고 있다. 이러한 kNN 알고리즘에서 목표값을 예측할 때 각 속성의 가중치를 동일하게 고려하는 것은 좋은 성능을 보장할 수 없으며 따라서 kNN에서 각 속성에 대한 가중치를 적절히 계산하는 것은 kNN 알고리즘의 성능을 결정하는 중요한 요소중의 하나이다. 본 논문에서는 정보이론을 이용하여 kNN 에서의 속성의 가중치를 효과적으로 계산하는 새로운 방법을 제시하고자한다. 제안된 방법은 각 속성이 목표 속성에 제공하는 정보의 양에 따라 가중치를 자동으로 계산하여 kNN 방법의 성능을 향상시킨다. 개발된 알고리즘은 다수의 실험 데이타를 이용하여 그 성능을 비교하였다.
본 연구에서는 나이브 베이시안 학습의 환경에서 속성의 가중치를 계산하는 새로운 방식을 제안한다. 기존 방법들이 속성에 가중치를 부여하는 방식인데 반하여 본 연구에서는 한걸음 더 나아가 속성의 값에 가중치를 부여하는 새로운 방식을 연구하였다. 이러한 속성값의 가중치를 계산하기 위하여 Kullback-Leibler 함수를 이용하여 가중치를 계산하는 방식을 제안하였고 이러한 가중치들의 특성을 분석하였다. 제안된 알고리즘은 다수의 데이터를 이용하여 속성 가중치 방식과 비교하였고 대부분의 경우에 더 좋은 성능을 제공함을 알 수 있었다.
본 연구에서는 원격탐사 수치화상 데이타의 분류단계에 가중치를 고려한 Bayesian MLC를 적용하여 그 분석 정확도를 향상시키고자 하였다. 우선, Bayesian 결정법칙을 원격탐사분야 측면에서 분석해 보고 정규확률 밀도함수를 이용하여 n차원으로 확장시켰다. 이 유도과정에서 정의되는 사천확률 항에, 평행육면체 분류결과를 가중치로 적용하여 분류를 실행하였다 그리고 최종적 분류정확도는 확률함수데이타에$x^2$분포를 가정한 임계치 처리를 하므로써 오분류확률이 높은 화소를 추출하여 그 양을 기준으로 평가하였다. 연구의 전체 처리과정에 사용한 인공위성 데이타는 LANDSAT TM(1985년 10월 21일 ; 116-34)이며 연구 대상지역은 서울시 행정구역 내이다. 가중치를 적용해 본 결과 5.21%의 분석정확도 향상을 이루었으며, 따라서 본 기법은 도시 지역과 같이 복잡한 분포특성을 가지는 지형에 효과적으로 활용될 수 있다고 생각된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.