• Title/Summary/Keyword: 덧셈기

Search Result 164, Processing Time 0.025 seconds

CMOS Clockless Wave Pipelined Adder Using Edge-Sensing Completion Detection (에지완료 검출을 이용한 클럭이 없는 CMOS 웨이브파이프라인 덧셈기 설계)

  • Ahn, Yong-Sung;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.161-165
    • /
    • 2004
  • In this paper, an 8bit wave pipelined adder using the static CMOS plus Edge-Sensing Completion Detection Logic is presented. The clockless wave-pipelining algorithm was implemented in the circuit design. The Edge-Sensing Completion Detection (ESCD) in the algorithm is consisted of edge-sensing circuits and latches. Using the algorithm, skewed data at the output of 8bit adder could be aligned. Simulation results show that the adder operates at 1GHz in $0.35{\mu}m$ CMOS technology with 3.3V supply voltage.

  • PDF

Design of 64-point FFT Processor using Area Efficient Complex Multiplier (저면적 복소곱셈기를 이용한 64 포인트 FFT 프로세서의 구현)

  • Kwon, Hyeok-Bin;Kim, Kyu-Chull
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.1029-1030
    • /
    • 2008
  • FFT(Fast Fourier Transform)는 디지털신호처리에 폭넓게 사용되며 특히 여러 OFDM 시스템에 FFT 처리 과정은 꼭 필요한 부분이다. 본 논문에서는 802.11a W-LAN 에 사용되는 64-point FFT 프로세서를 설계하였다. 설계된 FFT 프로세서는 Radix-$2^3$ 알고리즘을 사용하였으며 저면적복소곱셈기를 사용하여 FFT 프로세서의 면적을 줄이는 방법을 제안한다. 기존의 방식에서 네 개의 실수 곱셈기와 두 개의 덧셈기로 구성되는 복소 곱셈기를 두 개의 실수 곱셈기와 한 개의 덧셈기가 수행하도록 설계하였다. 제안한 FFT 프로세서는 VHDL 로 구현되었고 Quartus 4.2 에서 합성되었다. 합성결과 기존 방식에 비해 약 21%의 면적효율이 발생하였다.

The Method of Addition Subexpression for High-Speed Multiplierless FIR Filters (곱셈기를 사용하지 않은 고속 FIR 필터를 위한 부분 항 덧셈 방법)

  • Kim, Yong-Eun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.32-36
    • /
    • 2008
  • Multiplierless FIR filters can be designed by only adders using Common Subexpression algorithm. It has small area compared with filter which using multipliers. But it has long operation time because of carry ripple from the adder. In this paper, when the subexpressions are added in multiplier less filters, the number of subexpressions maintains 2 until final addition to avoid carry ripple of the addition, so the subexpression addition time of the filter can be reduced. To verify proposed method, subexpression adder circuit of the FIR filter is designed using given example of paper. The designed filter was synthesized using Hynix 0.18um process. By Synopsys simulation results, it is shown that by the proposed method, area, propagation delay time can be reduced up to 53.2%, 57.9% compared with conventional design method which using pipeline.

A Scalable Word-based RSA Cryptoprocessor with PCI Interface Using Pseudo Carry Look-ahead Adder (가상 캐리 예측 덧셈기와 PCI 인터페이스를 갖는 분할형 워드 기반 RSA 암호 칩의 설계)

  • Gwon, Taek-Won;Choe, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.34-41
    • /
    • 2002
  • This paper describes a scalable implementation method of a word-based RSA cryptoprocessor using pseudo carry look-ahead adder The basic organization of the modular multiplier consists of two layers of carry-save adders (CSA) and a reduced carry generation and Propagation scheme called the pseudo carry look-ahead adder for the high-speed final addition. The proposed modular multiplier does not need complicated shift and alignment blocks to generate the next word at each clock cycle. Therefore, the proposed architecture reduces the hardware resources and speeds up the modular computation. We implemented a single-chip 1024-bit RSA cryptoprocessor based on the word-based modular multiplier with 256 datapaths in 0.5${\mu}{\textrm}{m}$ SOG technology after verifying the proposed architectures using FPGA with PCI bus.

DPA-Resistant Logic Gates and Secure Designs of SEED and SHA-1 (차분 전력분석 공격에 안전한 논리 게이트 및 SEED 블록 암호 알고리즘과 SHA-1 해쉬 함수에의 응용)

  • Baek, Yoo-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.17-25
    • /
    • 2008
  • The differential power attack (DPA)[8] is a very powerful side-channel attack tool against various cryptosystems and the masking method[10] is known to be one of its algorithmic countermeasures. But it is non-trivial to apply the masking method to non-linear functions, especially, to arithmetic adders. This paper proposes simple and efficient masking methods applicable to arithmetic adders. For this purpose, we use the fact that every combinational logic circuit (including the adders) can be decomposed into basic logic gates (AND, OR, NAND, NOR, XOR, XNOR, NOT) and try to devise efficient masking circuits for these basic gates. The resulting circuits are then applied to the arithmetic adders to get their masking algorithm. As applications, we applied the proposed masking methods to SEED and SHA-1 in hardware.

Low-power Design and Implementation of IMT-2000 Interpolation Filter using Add/Sub Processor (덧셈 프로세서를 사용한 IMT-2000 인터폴레이션 필터의 저전력 설계 및 구현)

  • Jang Young-Beom;Lee Hyun-Jung;Moon Jong-Beom;Lee Won-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.79-85
    • /
    • 2005
  • In this paper, low-power design and implementation techniques for IMT-2000 interpolation filter are proposed. Processor technique for DA(Distributed Arithmetic) filter and minimization technique for number of addition in CSD(Canonic Signed Digit) filter are utilized for low-power implementation. proposed filter structure consists of 3 blocks. In the first CSD coefficient block, every possible 4 bit CSD coefficients are calculated and stored. In second processor block, multiplication is done by MUX and addition processor in terms of filter coefficient. Finally, in third shift register block, multiplied values are output and stored in shift register. For IMT-2000 interpolation filter, proposed and conventional structures are implemented by using Verilog-HDL coding. Gate counts for the proposed structure is reduced to 31.57% comparison with those of the conventional one.

Low-power/high-speed DCT structure using common sub-expression sharing (Common sub-expression sharing을 이용한 고속/저전력 DCT 구조)

  • Jang, Young-Beom;Yang, Se-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.119-128
    • /
    • 2004
  • In this paper, a low-power 8-point DCT structure is proposed using add and shift operations. Proposed structure adopts 4 cycles for complete 8-point DCT in order to minimize size of hardware and to enable high-speed processing. In the structure, hardware for the first cycle can be shared in the next 3 cycles since all columns in the DCT coefficient matrix are common except sign. Conventional DCT structures implemented with only add and shift operation use CSD(Canonic Signed Digit) form coefficients to reduce the number of adders. To reduce the number of adders further, we propose a new structure using common sub-expression sharing techniques. With this techniques, the proposed 8-point DCT structure achieves 19.5% adder reduction comparison to the conventional structure using only CSD coefficient form.

The Design of carry increment Adder Fixed Fan-out (팬 아웃이 고정된 carry increment 덧셈기 설계 방법)

  • Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.44-48
    • /
    • 2008
  • According to increment of stage, the speed of changeable stage Carry-increment adder can be close to $O(\sqrt{2n})$ because the word length which is computed in stage can be lengthened by 1 bit. But the number of stage bits is increased, fan-out of carry which is inputted in stage is increased. So tile speed can be slow. This paper presents a new carry-increment adder design method to fix the number of fan-outs regardless of the number of stages. By layout simulation of 37-bit adder, the area can be Increased up to 40%, but speed improvement up to 75% can be achieved, by the proposed method, compared with a conventional method.

Design of an Operator Architecture for Finite Fields in Constrained Environments (제약적인 환경에 적합한 유한체 연산기 구조 설계)

  • Jung, Seok-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • The choice of an irreducible polynomial and the representation of elements have influence on the efficiency of operators for finite fields. This paper suggests two serial multiplier for the extention field GF$(p^n)$ where p is odd prime. A serial multiplier using an irreducible binomial consists of (2n+5) resisters, 2 MUXs, 2 multipliers of GF(p), and 1 adder of GF(p). It obtains the mulitplication result after $n^2+n$ clock cycles. A serial multiplier using an AOP consists of (2n+5) resisters, 1 MUX, 1 multiplier of CF(p), and 1 adder of GF(p). It obtains the mulitplication result after $n^2$+3n+2 clock cycles.

A Novel Redundant Binary Montgomery Multiplier and Hardware Architecture (새로운 잉여 이진 Montgomery 곱셈기와 하드웨어 구조)

  • Lim Dae-Sung;Chang Nam-Su;Ji Sung-Yeon;Kim Sung-Kyoung;Lee Sang-Jin;Koo Bon-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2006
  • RSA cryptosystem is of great use in systems such as IC card, mobile system, WPKI, electronic cash, SET, SSL and so on. RSA is performed through modular exponentiation. It is well known that the Montgomery multiplier is efficient in general. The critical path delay of the Montgomery multiplier depends on an addition of three operands, the problem that is taken over carry-propagation makes big influence at an efficiency of Montgomery Multiplier. Recently, the use of the Carry Save Adder(CSA) which has no carry propagation has worked McIvor et al. proposed a couple of Montgomery multiplication for an ideal exponentiation, the one and the other are made of 3 steps and 2 steps of CSA respectively. The latter one is more efficient than the first one in terms of the time complexity. In this paper, for faster operation than the latter one we use binary signed-digit(SD) number system which has no carry-propagation. We propose a new redundant binary adder(RBA) that performs the addition between two binary SD numbers and apply to Montgomery multiplier. Instead of the binary SD addition rule using in existing RBAs, we propose a new addition rule. And, we construct and simulate to the proposed adder using gates provided from SAMSUNG STD130 $0.18{\mu}m$ 1.8V CMOS Standard Cell Library. The result is faster by a minimum 12.46% in terms of the time complexity than McIvor's 2 method and existing RBAs.