• 제목/요약/키워드: 덕트 및 스테이터 센서

검색결과 2건 처리시간 0.01초

대형 캐비테이션터널에서 펌프젯 추진기 단독성능 시험 및 해석 기법 연구 (Study of the Open-Water Test and Analysis for a Pumpjet Propulsor in LCT)

  • 안종우;설한신;정홍석;박영하
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.149-156
    • /
    • 2022
  • In order to study the open-water test and analysis techniques for pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct resulting in the strong interaction between the components. A ring-shaped sensor was developed to measure the thrust and torque for duct and stator. The test equipment including the pumpjet is installed on an existing POW dynamometer in the reverse direction. The results from the reverse POW test setup were validated against those from the conventional POW test setup in the Towing Tank (TT) as well as in the LCT. The pumpjet open-water test was conducted at the Reynolds number of around 1.0×106, at which the obtained experimental data became stable in the Reynolds number effect test. The open-water test for the rotor (rotor-only) was conducted to study whether the duct and stator should be considered as a part of the hull or the propulsor. On the basis of the test results, it was shown that the duct and stator could be included in the propulsor. The total thrust, combined thrust of rotor, duct, and stator was used for the pumpjet open-water test analysis. As the whole pumpjet is defined as a propulsor, it is thought that the self-propulsion test and analysis could be conducted in the same way as that of the conventional propeller.

대형 캐비테이션터널에서 펌프젯 추진기 자항성능 시험 및 해석 기법 연구 (Study of the Self-Propulsion Test and Analysis for a Pumpjet Propulsor in LCT)

  • 안종우;설한신;정홍석;박영하
    • 대한조선학회논문집
    • /
    • 제59권5호
    • /
    • pp.271-279
    • /
    • 2022
  • In order to study the self-propulsion test and analysis techniques for the submerged body with pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct which results in the strong interaction between the components. To measure the thrust and torque for duct and stator, a ring-shaped sensor was applied. The test equipment including pumpjet is installed on the stern of the submerged body. As the whole pumpjet including duct and stator was considered as the propulsor from pumpjet open-water test, the self-propulsion test was conducted in the same way. The total thrust, combined thrust of rotor, duct and stator was used for the pumpjet self-propulsion test analysis. Accordingly, the self-propulsion test and analysis were conducted in the same way as those of the conventional propeller. The full-scale performances of the pumpjet propulsor were compared with those of the reference propeller. On the basis of the present study, it is thought that the pumpjet propulsor would be designed optimally.