• Title/Summary/Keyword: 덕트설계

Search Result 187, Processing Time 0.029 seconds

Conceptual Study of an Exhaust Nozzle of an Afterburning Turbofan Engine (후기연소기 장착 터보팬엔진의 배기노즐 개념연구)

  • Choi, Seongman;Myong, Rhoshin;Kim, Woncheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.62-69
    • /
    • 2014
  • This paper presents a preliminary study of a convergent divergent nozzle in an afterburning turbofan engine of a supersonic aircraft engine. In order to design a convergent divergent nozzle, cycle model of a low bypass afterburning turbofan engine of which thrust class is 29,000 lbf at a sea level static condition is established. The cycle analysis at the design point is conducted by Gasturb 12 software and one dimensional gas properties at a downstream direction of the turbine are obtained. The dimension and configuration of an model turbofan engine are derived from take-off operation with wet reheat condition. The off-design cycle calculation is conducted at the all flight envelope on the maximum flight Mach number of 2.0 and maximum flight altitude of 15,000 m.

Parametric Designs of a Pre-swirl Duct for the 180,000DWT Bulk Carrier Using CFD (CFD를 이용한 180,000 DWT Bulk Carrier용 Pre-Swirl Duct의 파라메트릭 설계)

  • Cho, Han-Na;Choi, Jung-Eun;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.343-352
    • /
    • 2016
  • In this study, a pre-swirl duct for the 180,000 DWT bulk carrier has been designed from a propulsion standpoint using CFD. The stern duct - designed by NMRI - was selected as the initial duct. The objective function is to minimize the value of delivered power in model scale. Design variables of the duct include duct angle, diameter, chord length, and vertical and horizontal displacements from the center. Design variables of the stators are blade number, arrangement angle, chord length, and pitch angle. A parametric design was carried out with the objective function obtained using CFD. Reynolds averaged Navier-Stokes equations have been solved; and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. MRF and sliding mesh models have been applied to simulate the actuating propeller. A self-propulsion point has been obtained from the results of towing and self-propelled computations, i.e., form factor obtained from towing computation and towing forces obtained from self-propelled computations of two propeller rotating speeds. The reduction rate of the delivered power of the improved stern duct is 2.9%, whereas that of the initial stern duct is 1.3%. The pre-swirl duct with one inner stator in upper starboard and three outer stators in portside has been designed. The delivered power due to the designed pre-swirl duct is reduced by 5.8%.

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.

Large Scale Mass Flow Measurement Using Bellmouth and Rake (벨마우스와 레이크를 이용한 대용량 유량 계측)

  • Kim, Jeong-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.70-79
    • /
    • 2012
  • For an aerodynamic test facility, it is very important to get the precise measurement data of pressure, temperature and mass flow rate at the upstream to the test article. Hence, a new measurement method using a bellmouth and rakes was studied for the large scale system of which the corrected mass flow is between 5 kg/s and 8 kg/s. The bellmouth was designed by ISO standard for 0.5% accuracy, and the rakes were designed by using the equal area method. From the results of 9 test trials, it is found that the Reynolds number of rakes and the mass flow rate ratio can be simply formulated by an one-dimensional equation. The mass flow rate of rakes was calibrated by this equation. By the result of calibration, The maximum error rate was -0.507%, and the average error rate was -0.000274%.

Design of acoustic meta-material silencer based on coiled up space (지그재그 구조 메타물질을 이용한 음향 소음기 설계)

  • Shim, Ki-Hwoon;Jang, Jun-Young;Kwon, Ho-Jin;Song, Kyungjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper, we design an acoustic meta-material silencer that operates at low frequency to reduce noise in duct. A high refractive index meta-material silencer is demonstrated with a combination of zigzag structured thin waveguide and helmholtz resonator, which reduces the speed of sound. Finite Element Method (FEM) analysis via thermo-viscous acoustic mesh is performed in order to calculate thermo-viscous dissipation in sub-wavelength waveguide. Sound power reflection, transmission and absorption coefficients are obtained utilizing 4-Microphone Method. The results show that cut-off frequency and transmission loss can be controlled through adjusting intervals of the zigzag structures. A wide-band acoustic silencer is also suggested by connecting meta-materials in series or parallel.

A Study on Optimal Ventilation Design for Gas Boxes Installed in Semiconductor Manufacturing Equipment Handling Flammable Liquids (인화성 가스를 취급하는 반도체 제조장비에 설치된 가스박스 최적 환기 설계에 대한 연구)

  • Gyu Sun Cho;Sang Ryung Kim;Won Baek Yang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • Although Korea is the world's No. 1 semiconductor producing country, most studies are conducted with risk assessment for simple material risks due to the closedness of the site for industrial protection. In terms of industrial safety, a monitoring system such as a gas detector to determine the leakage of hazardous substances has been established, but research on effectively discharging harmful gastritis substances in case of leakage has only recently begun. Semiconductor manufacturing facilities (gas boxes) where a large amount of flammable materials are handled are currently being safety managed by using a gas detector and blocking the air inlet. It is difficult to dilute in a short time in case of leakage of flammable substances. Therefore, in this study, based on various criteria, the size of the duct according to the size of the gas box is determined and the appropriate size of the air inlet is studied to minimize the exhaust performance requirement without exposing hazardous chemicals to the outside in the event of a flammable leak. We want to do an optimal exhaust design.

Improvement of the Uniformity of Temperature Distribution inside Semiconductor Test Equipment Chamber (반도체 검사 장비의 챔버 내부 온도 분포의 균일성 개선)

  • Lee, Kwang-Ju;Jeong, Kyung-Seok;Park, Sung-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3626-3632
    • /
    • 2010
  • Some design changes were made to enhance the uniformity of temperature distribution inside the chamber of semiconductor test equipment. The design changes include the installation of adjustable airflow controller inside the chamber, the alignment of the centers of heater and match plate, the change in the size and the shape of holes in match plate base, and the addition of new holes of 2 mm diameter in order to allow airflow directly to the temperature sensors. In order to verify their effects, the temperature distributions inside the chambers were measured using 32 RTD sensors before and after the design changes. The temperature distributions were in the ranges of 87.1 to $91.5^{\circ}C$ ($90{\pm}2.9^{\circ}C$) and 89.5 to $90.8^{\circ}C$ ($90{\pm}0.8^{\circ}C$) before and after the design changes, respectively. The above temperature distribution after design changes was maintained for longer than 15 minutes, which satisfied the target temperature range of $90{\pm}1^{\circ}C$ for longer than 10 minutes.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

Estimation of Friction Coefficients Based on Field Data (실측값에 근거한 마찰계수의 추정)

  • Jeon, Se Jin;Park, Jong Chil;Park, In Kyo;Shim, Byul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.487-494
    • /
    • 2009
  • Friction coefficients of the prestressing tendon are the basic information required to control the prestressing force introduced to PSC structure during jacking. However, the friction coefficients show considerable differences depending on the specifications, causing much confusion to designers. In this study, the ranges of the friction coefficients presented in domestic and foreign specifications are compared together to clarify the differences. Then, a procedure is proposed that can be used to estimate the wobble and curvature friction coefficients from field data such as elongation and prestressing force and from theory related to the friction. The procedure is applied to various tendon profiles of several PSC bridges constructed by ILM, FCM and MSS. The resulting values are compared with those presented in some specifications and assumed in jacking and a reasonable range of the friction coefficient is discussed. Lift-off tests are also performed in some bridges to further verify the results. The resulting wobble friction coefficients are not as small as those presented in AASHTO specifications but range from the lower limit to mid point of domestic specifications, while the curvature friction coefficients approach or slightly exceed the upper limit.

Rule Generation and Approximate Inference Algorithms for Efficient Information Retrieval within a Fuzzy Knowledge Base (퍼지지식베이스에서의 효율적인 정보검색을 위한 규칙생성 및 근사추론 알고리듬 설계)

  • Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.103-115
    • /
    • 2001
  • This paper proposes the two algorithms which generate a minimal decision rule and approximate inference operation, adapted the rough set and the factor space theory in fuzzy knowledge base. The generation of the minimal decision rule is executed by the data classification technique and reduct applying the correlation analysis and the Bayesian theorem related attribute factors. To retrieve the specific object, this paper proposes the approximate inference method defining the membership function and the combination operation of t-norm in the minimal knowledge base composed of decision rule. We compare the suggested algorithms with the other retrieval theories such as possibility theory, factor space theory, Max-Min, Max-product and Max-average composition operations through the simulation generating the object numbers and the attribute values randomly as the memory size grows. With the result of the comparison, we prove that the suggested algorithm technique is faster than the previous ones to retrieve the object in access time.

  • PDF