In the actual classroom the so-called flow learning is able to motivate the students through face-to-face feedback, and to meet their needs for educational achievement. By contrast, the so-called e-learning method falls short of the satisfactory level of real-life interaction, which makes many learners drop out or give up on their learning. In order to better the e-learning environment, this study presents a dialogue-based feedback system that improves the flow learning of the learners' in the classroom. This newly developed system was applied at the actual school. The result is that the experimented group improved its flow learning, compared with the controlled group. In the former group, each individual showed some consciousness of objective and challenge following the concrete feedback. That is to say, this system enhances the attitude of an active participation and induces the flow learning, thanks to the dialogue-based feedback and the sustained interest in learning. In conclusion, the significance of this study lies in suggesting the direction of a new learning method development in the e-learning environment.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.293-299
/
2021
본 논문은 외국어 학습을 위한 딥러닝 기반 영어 교육 플랫폼인 PEEP-Talk (Personalized English Education Platform)을 제안한다. PEEP-Talk는 딥러닝 기반 페르소나 대화 시스템과 영어 문법 교정 피드백 기능이 내장된 교육용 플랫폼이다. 또한 기존 페르소나 대화시스템과 다르게 대화의 흐름이 벗어날 시 이를 자동으로 판단하여 대화 주제를 실시간으로 변경할 수 있는 CD (Context Detector) 모듈을 제안하며 이를 적용하여 실제 사람과 대화하는 듯한 느낌을 사용자에게 줄 수 있다. 본 논문은 PEEP-Talk의 각 모듈에 대한 정량적인 분석과 더불어 CD 모듈을 객관적으로 판단할 수 있는 새로운 성능 평가지표인 CDM (Context Detector Metric)을 기반으로 PEEP-Talk의 강건함을 검증하였다. 이와 더불어 PEEP-Talk를 카카오톡 채널을 이용하여 배포하였다.
Min-Kyo Jung;Beomseok Hong;Wonseok Choi;Youngsub Han;Byoung-Ki Jeon;Seung-Hoon Na
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.275-280
/
2023
문서 그라운딩된 대화 시스템의 응답 성능 개선을 위한 방법론을 제안한다. 사전 학습된 거대 언어 모델 LLM(Large Language Model)인 Llama2 모델에 Zero-Shot In-Context learning을 적용하여 대화 마지막 유저 질문에 대한 응답을 생성하는 태스크를 수행하였다. 본 연구에서 제안한 응답 생성은 검색된 top-1 문서와 대화 기록을 참조해 초기 응답을 생성하고, 생성된 초기 응답을 기반으로 검색된 문서를 대상으로 재순위화를 수행한다. 이 후, 특정 순위의 상위 문서들을 이용해 최종 응답을 생성하는 과정으로 이루어진다. 검색된 상위 문서를 이용하는 응답 생성 방식을 Baseline으로 하여 본 연구에서 제안한 방식과 비교하였다. 그 결과, 본 연구에서 제안한 방식이 검색된 결과에 기반한 실험에서 Baseline 보다 F1, Bleu, Rouge, Meteor Score가 향상한 것을 확인 하였다.
Lee, Kyusong;Lee, Sungjin;Lee, Jonghoon;Noh, Hyeongjong;Lee, Gary Geunbae
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.22-27
/
2010
최근 국가적 차원에서 영어교육에 대한 많은 투자가 이루어지고 있으나 기존의 주입식, 암기식 영어 교육은 회화 실력 향상에 큰 도움을 주지 못하였다. 컴퓨터를 이용한 영어교육 또한 많은 관심을 얻고 있으나 실제 의사소통을 위한 회화 학습에 대한 고려는 깊지 않으며, 주어진 흐름의 대본을 따라 단순히 읽고 반복하는 수준의 시스템만 존재하고 있다. 이러한 학습형태는 흥미 유발 동기가 약하여 사용자로 하여금 장기간 꾸준히 학습하게 만들지 못한다는 문제가 있다. 이러한 문제점에 대하여 제2언어 습득 이론에 바탕을 둔 자연어 처리 기반 몰입 환경 영어 교육 시스템을 제안한다. 이는 도메인 확장성이 뛰어난 예제 기반 대화 시스템을 3 차원 가상공간과 결합한 시스템으로 자연스러운 대화를 통한 외국어 회화 연습을 하는 과정에서 학습자의 발화 오류를 분석하고 교육적 피드백을 제공한다. 또한 현실과 비슷한 몰입 환경에서 체험형 기술을 통해 자발적인 학습을 유도하고 집중력, 기억력을 획기적으로 높이고자 한다. 본 논문에서는 영어교육 시스템의 이론적 배경, 예제 기반 대화관리, 시스템 구성요소와 동작에 대하여 중점적으로 기술하였다.
In this paper, we present an Example-based Dialogue System for English conversation tutoring. It aims to provide intelligent one-to-one English conversation tutoring instead of old fashioned language education with static multimedia materials. This system can understand poor expressions of students and it enables green hands to engage in a dialogue in spite of their poor linguistic ability, which gives students interesting motivation to learn a foreign language. And this system also has educational functionalities to improve the linguistic ability. To achieve these goals, we have developed a statistical natural language understanding module for understanding poor expressions and an example-based dialogue manager with high domain scalability and several effective tutoring methods.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.419-422
/
2010
사용자와 환경의 변화에 적응하기 위해서 베이지안 네트워크의 다양한 학습 방법들이 연구되고 있다. 기존의 많은 학습방법에서는 학습 데이터로부터 통계적 방법을 통해서 베이지안 네트워크 모델을 학습하는데, 이러한 접근 방법은 학습 데이터를 수집하기 어려운 문제에 적용하기 힘들며, 사용자의 의도를 데이터의 패턴들로만 학습하므로 직접적으로 사용자의 의도를 반영할 수 없다. 본 논문에서는 대화에 기반하여 사용자의 의도를 직접적으로 수집하고, 이로부터 베이지안 네트워크의 파라메터를 학습하는 방법을 연구한다. 제안하는 방법에서는 사용자와의 대화를 통해서 현재의 모델의 잘못된 점 혹은 개선점을 직접적으로 입력 받고, 이를 바탕으로 베이지안 네트워크 모델을 수정하여 데이터의 수집 없이 빠른 시간에 사용자가 원하는 모델을 학습 할 수 있다. 기존의 통계적 기법을 이용한 대표적인 베이지안 네트워크 파라메터 학습 방법인 최대우도 추정(Maximum Likelihood Estimation; MLE) 방법과 제안하는 방법을 비교하여 제안하는 방법의 유용성을 확인한다.
웹기반 학습은 학습자의 자율적인 통제하에서 학습이 이루어지는 특성을 갖고 있다. 학습 컨텐츠와 학습자간의 충분한 대화 즉, 상호작용이 제공되지 않는다면 학습자는 일방적인 학습을 수행하게 되므로 학습에 대한 정확한 이해를 판단할 수가 없다. 이런 문제점을 해결하기 위해서 웹기반 학습의 여러 유형의 컨텐츠중에서 가장 상호작용 요소가 강한 시뮬레이션 형태의 컨텐츠를 이용해서 디지털 회로를 직접 학습자가 설계할 수 있도록 웹기반 시뮬레이션 도구를 설계 및 구현하고자 한다. 이로 인해서 학습자와 학습 컨텐츠간의 쌍방향 대화를 할 수 있는 환경을 제공함으로써 복잡한 디지털 회로에 대한 학습자의 학습 결과에 대한 피드백을 줌으로써 학습자의 학습 성취도를 높일 수 있다.
Seo, Minyeong;Hong, Taesuk;Kim, Juae;Ko, Youngjoong;Seo, Jungyun
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.243-246
/
2018
최근 사용자 발화를 이해하고 그에 맞는 피드백을 생성할 수 있는 대화 시스템의 중요성이 증가하고 있다. 따라서 사용자 의도를 파악하기 위한 화행 분석은 대화 시스템의 필수적인 요소이다. 최근 많이 연구되는 심층 학습 기법은 모델이 데이터로부터 자질들을 스스로 추출한다는 장점이 있다. 발화 자체의 연속성과 화자간 상호 작용을 포착하기 위하여 CNN에 RNN을 결합한 CNN-RNN을 제안한다. 본 논문에서 제안한 계층 구조 어텐션 매커니즘 기반 CNN-RNN을 효과적으로 적용한 결과 워드 임베딩을 추가한 조건에서 가장 높은 성능인 91.72% 정확도를 얻었다.
Kim, Jin-Won;Park, Seung-Jin;Min, Ga-Young;Lee, Keon-Myung
Journal of Convergence for Information Technology
/
v.7
no.6
/
pp.245-251
/
2017
This presents an English conversation training system with which learners train their conversation skills in English, which makes them converse with native speaker characters in a virtual reality environment with voice. The proposed system allows the learners to talk with multiple native speaker characters in varous scenarios in the virtual reality environment. It recongizes voices spoken by the learners and generates voices by a speech synthesis method. The interaction with characters in the virtual reality environment in voice makes the learners immerged in the conversation situations. The scoring system which evaluates the learner's pronunciation provides the positive feedback for the learners to get engaged in the learning context.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.55-57
/
2004
본 논문은 온톨로지를 활용한 스키마 매칭 알고리즘을 제안한다. 기존의 대부분의 스키마 매칭 방법은 단순매칭을 대상으로 하는 반면, 제안된 방법은 계층적 구조의 온톨로지에 기반하여 복합매칭을 계산할 수 있다. 특히 제안된 온톨로지는 이전의 매칭결과에 대한 사용자의 피드백을 이용하여 자동으로 갱신됨에 따라 적절한 도메인 정보를 유지할 수 있다. 성능평가를 위한 실험결과, 온톨로지의 적용이 매칭 성능을 향상시킴을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.