• Title/Summary/Keyword: 대형칼로리미터

Search Result 8, Processing Time 0.021 seconds

대형 콘 칼로리미터의 신뢰성 구축을 위한 발열량 측정 결과 분석

  • Yu, U-Jun;Kim, Chang-Seop;Jeon, Gwang-Hun;Yeom, Mun-Cheon;SaGong, Seong-Ho;Kim, Jeong-Yong;Kim, Seong-Chan;Yu, Hong-Seon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.49-49
    • /
    • 2013
  • 실규모급 화재 실험의 신뢰성 있는 발열량 측정을 위해서 흡입 배관의 직경 1.6 m, 직선길이 26m, 후드 직경 10 m 그리고 흡입용량 $2,000m^3/min$ 이상의 대형 콘 칼로리미터를 구성하여 헵탄의 화재 크기별 연소 실험을 진행하였다. 발열량 측정을 비교 분석하기 위해서 산소 소모 지수법, 질량 소모법, 복사열 그리고 대류열 측정 기법에 따라서 각각의 발열량을 산출하고 크기를 비교하였다. 그 결과 대형 콘 칼로리미터에 의해서 측정한 산소 소모 지수법은 이론 발열량에 해당하는 질량 소모법과 최대 약 2.3 % 정도, 복사열에 의한 발열량 산출법은 12.2 % 정도, 연소면적에 의한 이상적인 발열량과는 최대 30 % 정도, 그리고 대류열만 고려한 경우 약 50 % 정도 차이가 나는 것을 확인하였다.

  • PDF

Design of Large Cone Calorimeter for the Fire Study (화재연구를 위한 대형 콘 칼로리미터의 설계)

  • Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.65-71
    • /
    • 2006
  • Some major properties such as a heat release rate have been measured experimentally for the validation of fire model and the clarification of fire phenomena as the study is more rigorous recently. Although the reduced-scale experiment also provides the basic data and the physical understanding in fire study, it is not enough to explain real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore, large cone calorimeter have been built and used in a few foreign countries for the measurement of large scale fire. This paper addressed the theoretical background and the description of key features in the design of the facility. It will be a useful guide for implementation of the large scale cone calorimeter in the future.

A study on the vehicle fire property using the large scale calorimeter (대형칼로리미터를 이용한 차량 화재 특성에 관한 연구)

  • Yoo, Yong-Ho;Kim, Heung-Youl;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2007
  • The reduced scale fire test provides basic data but it is not enough to analysis real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore we have developed the large scale calorimeter in order to the real scale fire test. This advanced large scale calorimeter used for physical properties such as a heat release rate, based upon consumption of $O_2$ method. Using this large scale calorimeter, we cameo out the real scale vehicle fire test in order to evaluation for heat release rate. We obtained the calculated result for HRR $2.3{\sim}3.4\;MW$ and this result is very similar to the PIARC candidate HRR. It is approve that this facility has the reliability and it is capable of applying to the advance fire research in the future.

  • PDF

Analysis of Heat Release Rate with Various Diameter of Heptane Pool Fire Using Large Scale Cone Calorimeter (헵탄의 화원 직경 변화를 고려한 대형콘칼로리미터의 발열량 측정 결과 분석)

  • You, Woo Jun;Nam, Dong-Gun;Youm, Moon Cheon;Kim, Sung-Chan;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • The present study has been conducted to analyse the effects of various pool diameters on the measurement of heat release rate (HRR) of heptane fire using large scale cone calorimeter (LSC). The burning rate which is the major parameter for HRR compared with the previous model suggested by A. Hamins. The combustion efficiency for heptane by oxygen consumption method is about 91%, which is almost same with the previous results of 92% suggested by J. Gore. The convective HRR by enthalpy consumption method was 54% lower than HRR by oxygen consumption method. This results are practical use for establishing the reliability of heat release rate for fire experiment.

A study of the HRR and fire propagation phenomena for the fire safety design of deep road tunnel (대심도터널 화재 안전 설계를 위한 승용차의 열방출률 및 화재전파 특성에 관한 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.321-328
    • /
    • 2010
  • The study performed an actual fire experiment in order to propose the heat release rate of automobile that is the most basic architectural element for the fire safety design in a tunnel, whose importance has been recognized as the underground traffic tunnels are planned in Korean metropolitan cities. The heat release rate of a van is measured by the large scale calorimeter, in which the law of oxygen consumption is applied, and the fire expansion characteristics in a tunnel by placing two passenger cars nearby one another in the tunnel. As the results, the heat release rate of the van was revealed to be 5.9 MW, and carbon monoxide was emitted 482 ppm at a maximum. In case of two passenger car experiment for the fire expansion characteristics, the adjacent car was ignited about 3 minutes 30 seconds after the fire occurrence, and the complete fire was developed after 15 minutes. The maximum heat release was 9 MW. The results from the actual fire experiment can be an important input data for future quantitative analysis as well as an element applicable to a tunnel disaster preventive equipment design.

The Study of a Correlation between Heat Release and Smoke Production by Using Oxygen Consumption Calorimeter Up to 10 MW Facility (10MW급 까지의 산소소모율법 칼로리미터를 활용한 열방출률과 연기발생률의 상관성에 관한 연구)

  • Ryu, Sang-Hoon;Yoo, Yong-Ho;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.58-65
    • /
    • 2010
  • The fire accidents having recently occurred are getting more and more larger and causing lots of damage in terms of property loss and casualties increase, so there is in need of technical fire safety development like comprehensive prevention solution in order to effectively prevent. Especially, the needing of new paradigm for advanced fire safe technology is gathering strength in high-rise modern building construction. Therefore, we want to find out on this paper what is a correlation between heat release rate measurement and smoke release volume by three parts of oxygen consumption calorimeter in bench scale calorimeter (cone calorimeter/ISO 5660/Avg.500Kw), Medium scale calorimeter (Room corner tester, Single burning Item/ISO 9750, EN 13823/Avg.3MW), and large scale calorimeter (Industry calorimeter/Avg. 10MW). Thus, Smoke detective of new paradigm devised by making use of a correlation between heat release and smoke production is to help reduce loss property and casualties. Ultimately, based on this theory, a new concept of fire alarm and evacuation system will be developed and expected to apply to a skyscraper.

The Study on Compartment Fire Experiment According to Fire Load (화재하중에 따른 구획화재 실험 연구)

  • Kweon, Oh-Sang;Kim, Heung-Youl
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.16-22
    • /
    • 2017
  • In Korea, performance-based fire safety designs are being discussed to deal with the various risks of fire in complex and diverse types of structure. However, performance-based fire safety designs are not actively employed because it is difficult to estimate the fire characteristics related to the various factors in buildings. In this study, real scale fire tests were conducted based on fire severity levels and fire loads provided in He New Zealand Building Code, in order to use the results as guidelines and fundamental data for performance-based designs. In the real scale fire tests conducted in a 10MW full-scale calorimeter, wood cribs were placed in a $2.4(L){\times}3.6(W){\times}2.4(H)m$ mock-up of a compartment which had one $0.8(L){\times}2.0(H)$ opening for different fire loads and heating was continued until all of the wood cribs were burned down. The heat release rate started to increase rapidly 90 seconds after the wood cribs caught fire. In the test with a fire load level 1, the maximum heat release rate of 4743.4 kW was reached at 244 second. In the test with fire load level 2, a maximum heat release rate of 5050.9 kW was reached at 497 second. In the test with fire load level 3, a maximum heat release rate of 4446.9 kW was reached at 677 second.

Thermal Characteristics of Living Leaves in Pinus Densiflora with Heat Flux (복사열 증가에 따른 소나무 생엽의 열적특성 분석)

  • Park, Young-Ju;Lee, Hae-Pyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.75-82
    • /
    • 2010
  • To study the combustion characteristics of forest fuel by fire intensity, the experiment of combustion characteristics on Pinus Densiflora living leaves, which is the weakest species to the forest fire, was delivered, using variables of heat flux(25 kW/$m^2$, 50 kW/$m^2$, 75 kW/$m^2$). With the equipment of Cone calorimeter, the characteristics of ignition, heat, smoke release, CO and $CO_2$ release, and mass loss were analyzed. Pinus Densiflora living leaves containing moisture of 60.66% were not ignited at the heat flux of variables 25 kW/$m^2$, 50 kW/$m^2$, 75 kW/$m^2$. In proportion to the heat flux value, heat release amount and heat release rate reached maximum value rapidly: higher variables came to the maximum by the half rapidity and the maximum value were twice higher than the former lower variables respectively. As for the smoke release, the less heat flux the variable had, the more smoke release it had, due to incomplete combustion. The release amount of CO and $CO_2$ had more maximum value as the heat flux increased and more radiant heat meaned more carbon oxide. When the forest fire breaks out, therefore, a great amount of CO and $CO_2$ will be released by Pinus Densiflora.