Objects such as products, product reviews, and user profiles are important in e-commerce domain. Vector is one of the most widely used object representation scheme. Information of e-commerce objects may be modeled by vectors in which the featured values are assigned to various dimensions. E-commerce objects are in general quantitatively large while some are similar or even same in reality. It Plays, therefore, an important role to measure the similarity between objects. In this paper, we survey the state-of-the -art vector similarity measures. Similarity measures are analyzed to feature the algebraic characteristics and relationship of those, and upon which we classify the related measures accordingly. We then present such features that standard vector similarity measures should convey.
In this paper, we propose the prediction search algorithm for block matching using the temporal/spatial correlation of the video sequence and the renter-biased property of motion vectors The proposed algorithm determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(Sum of Absolute Difference) value by the predicted motion vector from the same block of the previous frame and the predictor candidate pint in each search region and the predicted motion vector from the neighbour blocks of the current frame. And the searching process after moving the starting point is processed a adaptive search pattern according to the magnitude of motion vector Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved up to the 0.75dB as depend on the video sequences and improved about 0.05∼0.34dB on an average except the FS (Full Search) algorithm.
Journal of the Korea Academia-Industrial cooperation Society
/
v.14
no.1
/
pp.402-410
/
2013
In this paper, we propose a new fast block matching algorithm for block matching using the temporal and spatially correlation of the video sequence and local statistics of neighboring motion vectors. Since the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. The proposed algorithm determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(sum of absolute difference) value by the predicted motion vectors of neighboring blocks around the same block of the previous frame and the current frame and the predictor candidate point on each division region by binary-tree structure. Experimental results show that the proposed algorithm has the capability to dramatically reduce the search points and computing cost for motion estimation, comparing to fast FS(full search) motion estimation and other fast motion estimation.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.8B
/
pp.1577-1585
/
1999
In this paper, we propose detection methods for gradual scene changes such as dissolve, pan, and zoom. The proposal method to detect a dissolve region uses scene features based on spatial statistics of the image. The spatial statistics to define shot boundaries are derived from squared means within each local area. We also propose a method of the camera motion detection using four representative motion vectors in the background. Representative motion vectors are derived from macroblock motion vectors which are directly extracted from MPEG streams. To reduce the implementation time, we use DC sequences rather than fully decoded MPEG video. In addition, to detect the gradual scene change region precisely, we use all types of the MPEG frames(I, P, B frame). Simulation results show that the proposed detection methods perform better than existing methods.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.42
no.4
s.304
/
pp.119-126
/
2005
We propose a new content-based image retrieval using a representative color histogram and directional pattern histogram that is adaptive to the classification characteristics of the image blocks. In the proposed method the color and pattern feature vectors are extracted according to the characteristics o: the block classification after dividing the image into blocks with a fixed size. First, the divided blocks are classified as either luminance or color blocks depending on the saturation of the block. Thereafter, the color feature vectors are extracted by calculating histograms of the block average luminance co-occurrence for the luminance block and the block average colors for the color blocks. In addition, block directional pattern feature vectors are extracted by calculating histograms after performing the directional gradient classification of the luminance. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.295-297
/
2003
본 논문에서는 각 프레임으로부터 추출된 통계적 특성을 이용하여 동영상의 분할방법과 분할된 각 장면에 대한 대표프레임을 추출하는 방법을 제안한다. 제안된 방법은 동영상의 각 프레임에 대하여 다해상도 분석을 실시하여 저주파 부 밴드로부터 히스토그램 특징을 추출하여 급격한 장면전환을 분할하는데 이용하였으며 또한 점진적인 장면전환을 검출하기 위해서는 고주파 부 밴드로부터 계산되는 화소의 분산치를 계산하여 특징벡터로 사용하였다. 실험의 결과를 통하여 제안된 동영상의 분할방법과 대표프레임 추출에 대한 알고리즘들이 동영상 자료의 분석 및 색인을 위한 효율적인 동영상 분할을 가능하게 하며, 차후 내용기반 영상과 비디오의 색인 및 검색을 위한 전처리의 단계로 사용되어질 수 있는 매우 유용한 방법임을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.835-837
/
2005
최근 얼굴 인식은 사용자의 편의성을 포함한 다양한 장점으로 인하여 생체 인식 시장에서 주요 기술로 대두되고 있다. 그러나 조명 변화에 기인한 얼굴 인식 성능의 저하는 실용화에 걸림돌이 되고 있는 실정이다. 따라서 조명 변화에 따른 얼굴의 외형 변화를 분석하는 연구들이 세계적으로 활발히 진행되고 있다. 그러나 기존 방법들은 다수의 등록 영상이나 조명에 대한 사전 정보가 필요하거나 실시간으로 구현되기 어렵기 때문에 실용 시스템에 적용하기는 어려운 실정이다. 따라서, 본 논문에서는, 여러 조명 영상들로 구성된 학습 데이터를 이용하여, 조명에 대한 정보가 없는 한 장의 입력 영상을 분석하는 방법을 제안한다. 제안된 방법은 SVDD를 이용하여 학습 데이터의 여러 조면 영상들로부터 입력 영상의 조명과 같은 대표영상을 합성하고 이 대표영상들의 선형 조합을 이용하여 입력 영상을 표현한다. 제안 방법의 효율성을 검증하기 위하여 공인 얼굴 데이터베이스들을 이용하여, 기존 방법들과 비교 실험을 수행하였으며, 조명 변화가 큰 영상에서도 안정된 조명 변화의 분석이 가능하였다.
Yang, Yu-Jeong;Lee, Bo-Hyun;Kim, Jin-Sil;Lee, Ki Yong
The Journal of Society for e-Business Studies
/
v.24
no.2
/
pp.1-14
/
2019
Because of the characteristics of game software, it is important to quickly identify and reflect users' needs into game software after its launch. However, most sites such as the Google Play Store, where users can download games and post reviews, provide only very limited and ambiguous classification categories for game reviews. Therefore, in this paper, we develop an automatic classification system for game reviews that categorizes reviews into categories that are clearer and more useful for game providers. The developed system converts words in reviews into vectors using word2vec, which is a representative word embedding model, and classifies reviews into the most relevant categories by measuring the similarity between those vectors and each category. Especially, in order to choose the best similarity measure that directly affects the classification performance of the system, we have compared the performance of three representative similarity measures, the Euclidean similarity, cosine similarity, and the extended Jaccard similarity, in a real environment. Furthermore, to allow a review to be classified into multiple categories, we use a threshold-based multi-category classification method. Through experiments on real reviews collected from Google Play Store, we have confirmed that the system achieved up to 95% accuracy.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.9
/
pp.837-843
/
2001
In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and them choose a number of terms called initial representative keywords (IRKs) from them through fuzzy inference. Then, by expanding and reweighting IRKs using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKs so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The result show that our approach outperforms the other approaches.
Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
The Journal of the Korea Contents Association
/
v.7
no.2
/
pp.1-10
/
2007
In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.