• Title/Summary/Keyword: 대표 벡터

Search Result 300, Processing Time 0.03 seconds

Three Dimensional Object Recognition using PCA and KNN (peA 와 KNN를 이용한 3차원 물체인식)

  • Lee, Kee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.57-63
    • /
    • 2009
  • Object recognition technologies using PCA(principal component analysis) recognize objects by deciding representative features of objects in the model image, extracting feature vectors from objects in a image and measuring the distance between them and object representation. Given frequent recognition problems associated with the use of point-to-point distance approach, this study adopted the k-nearest neighbor technique(class-to-class) in which a group of object models of the same class is used as recognition unit for the images in-putted on a continual input image. However, the robustness of recognition strategies using PCA depends on several factors, including illumination. When scene constancy is not secured due to varying illumination conditions, the learning performance the feature detector can be compromised, undermining the recognition quality. This paper proposes a new PCA recognition in which database of objects can be detected under different illuminations between input images and the model images.

A Text Summarization Model Based on Sentence Clustering (문장 클러스터링에 기반한 자동요약 모형)

  • 정영미;최상희
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.3
    • /
    • pp.159-178
    • /
    • 2001
  • This paper presents an automatic text summarization model which selects representative sentences from sentence clusters to create a summary. Summary generation experiments were performed on two sets of test documents after learning the optimum environment from a training set. Centroid clustering method turned out to be the most effective in clustering sentences, and sentence weight was found more effective than the similarity value between sentence and cluster centroid vectors in selecting a representative sentence from each cluster. The result of experiments also proves that inverse sentence weight as well as title word weight for terms and location weight for sentences are effective in improving the performance of summarization.

  • PDF

A Recommender Agent using Association Item Trees (연관 아이템 트리를 이용한 추천 에이전트)

  • Ko, Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.298-305
    • /
    • 2009
  • In contrast to content_based filtering systems, collaborative filtering systems not only don't contain information of items, they can not recommend items when users don't provide the information of their interests. In this paper, we propose the recommender agent using association item tree to solve the shortcomings of collaborative filtering systems. Firstly, the proposed method clusters users into groups using vector space model and K-means algorithm and selects group typical rating values. Secondly, the degree of associations between items is extracted from computing mutual information between items and an associative item tree is generated by group. Finally, the method recommends items to an active user by using a group typical rating value and an association item tree. The recommender agent recommends items by combining user information with item information. In addition, it can accurately recommend items to an active user, whose information is insufficient at first rate, by using an association item tree based on mutual information for the similarity between items. The proposed method is compared with previous methods on the data set of MovieLens recommender system.

Shrinkage Structure of Ridge Partial Least Squares Regression

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.327-344
    • /
    • 2007
  • Ridge partial least squares regression (RPLS) is a regression method which can be obtained by combining ridge regression and partial least squares regression and is intended to provide better predictive ability and less sensitive to overfitting. In this paper, explicit expressions for the shrinkage factor of RPLS are developed. The structure of the shrinkage factor is explored and compared with those of other biased regression methods, such as ridge regression, principal component regression, ridge principal component regression, and partial least squares regression using a near infrared data set.

  • PDF

Incremental Clustering of XML Documents based on Similar Structures (유사 구조 기반 XML 문서의 점진적 클러스터링)

  • Hwang Jeong Hee;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.699-709
    • /
    • 2004
  • XML is increasingly important in data exchange and information management. Starting point for retrieving the structure and integrating the documents efficiently is clustering the documents that have similar structure. The reason is that we can retrieve the documents more flexible and faster than the method treating the whole documents that have different structure. Therefore, in this paper, we propose the similar structure-based incremental clustering method useful for retrieving the structure of XML documents and integrating them. As a novel method, we use a clustering algorithm for transactional data that facilitates the large number of data, which is quite different from the existing methods that measure the similarity between documents, using vector. We first extract the representative structures of XML documents using sequential pattern algorithm, and then we perform the similar structure based document clustering, assuming that the document as a transaction, the representative structure of the document as the items of the transaction. In addition, we define the cluster cohesion and inter-cluster similarity, and analyze the efficiency of the Proposed method through comparing with the existing method by experiments.

Self Disease Diagnosis System Using Enhanced ART2 Algorithm (개선된 ART2 알고리즘을 이용한 자가 질병 진단 시스템)

  • Kim, Kwang-Baek;Woo, Young-Woon;Kim, Ju-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2150-2157
    • /
    • 2007
  • In this paper, we have proposed a self disease diagnosis system for ordinary persons to help the decision of access methods to a specialized medical management, and for medical specialities to discover new diseases and their symptoms easily, using verification of an individual#s health status by a series of processes performed by oneself. In the proposed self disease diagnosis system, illness is decided by 60 kinds of diseases selected using the report called #Diseases that Koreans take seriously# published by Ministry of Health & Welfare and medical contents called #Engel Pharm#, and also using 161 representative symptoms for the 60 kinds of diseases. An individual#s health information is extracted by diagnosis of one#s health status by a clustering of the 60 kinds of diseases using enhanced ART2 algorithm and input vectors from the results of questions for symptoms of each disease.

Major Class Recommendation System based on Deep learning using Network Analysis (네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템)

  • Lee, Jae Kyu;Park, Heesung;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.95-112
    • /
    • 2021
  • In university education, the choice of major class plays an important role in students' careers. However, in line with the changes in the industry, the fields of major subjects by department are diversifying and increasing in number in university education. As a result, students have difficulty to choose and take classes according to their career paths. In general, students choose classes based on experiences such as choices of peers or advice from seniors. This has the advantage of being able to take into account the general situation, but it does not reflect individual tendencies and considerations of existing courses, and has a problem that leads to information inequality that is shared only among specific students. In addition, as non-face-to-face classes have recently been conducted and exchanges between students have decreased, even experience-based decisions have not been made as well. Therefore, this study proposes a recommendation system model that can recommend college major classes suitable for individual characteristics based on data rather than experience. The recommendation system recommends information and content (music, movies, books, images, etc.) that a specific user may be interested in. It is already widely used in services where it is important to consider individual tendencies such as YouTube and Facebook, and you can experience it familiarly in providing personalized services in content services such as over-the-top media services (OTT). Classes are also a kind of content consumption in terms of selecting classes suitable for individuals from a set content list. However, unlike other content consumption, it is characterized by a large influence of selection results. For example, in the case of music and movies, it is usually consumed once and the time required to consume content is short. Therefore, the importance of each item is relatively low, and there is no deep concern in selecting. Major classes usually have a long consumption time because they have to be taken for one semester, and each item has a high importance and requires greater caution in choice because it affects many things such as career and graduation requirements depending on the composition of the selected classes. Depending on the unique characteristics of these major classes, the recommendation system in the education field supports decision-making that reflects individual characteristics that are meaningful and cannot be reflected in experience-based decision-making, even though it has a relatively small number of item ranges. This study aims to realize personalized education and enhance students' educational satisfaction by presenting a recommendation model for university major class. In the model study, class history data of undergraduate students at University from 2015 to 2017 were used, and students and their major names were used as metadata. The class history data is implicit feedback data that only indicates whether content is consumed, not reflecting preferences for classes. Therefore, when we derive embedding vectors that characterize students and classes, their expressive power is low. With these issues in mind, this study proposes a Net-NeuMF model that generates vectors of students, classes through network analysis and utilizes them as input values of the model. The model was based on the structure of NeuMF using one-hot vectors, a representative model using data with implicit feedback. The input vectors of the model are generated to represent the characteristic of students and classes through network analysis. To generate a vector representing a student, each student is set to a node and the edge is designed to connect with a weight if the two students take the same class. Similarly, to generate a vector representing the class, each class was set as a node, and the edge connected if any students had taken the classes in common. Thus, we utilize Node2Vec, a representation learning methodology that quantifies the characteristics of each node. For the evaluation of the model, we used four indicators that are mainly utilized by recommendation systems, and experiments were conducted on three different dimensions to analyze the impact of embedding dimensions on the model. The results show better performance on evaluation metrics regardless of dimension than when using one-hot vectors in existing NeuMF structures. Thus, this work contributes to a network of students (users) and classes (items) to increase expressiveness over existing one-hot embeddings, to match the characteristics of each structure that constitutes the model, and to show better performance on various kinds of evaluation metrics compared to existing methodologies.

Experimental Analysis of Algorithms of Splitting and Connecting Snake for Extracting of the Boundary of Multiple Objects (복수객체의 윤곽추출을 위한 스네이크 분리 및 연결 알고리즘의 실험적 분석)

  • Cui, Guo;Hwang, Jae-Yong;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.221-224
    • /
    • 2012
  • The most famous algorithm of splitting and connecting Snake for extracting the boundary of multiple objects is the nearest method using the distance between snake points. It often can't split and connect Snake due to object topology. In this paper, its problem was discussed experimentally. The new algorithm using vector between Snake segment is proposed in order to split and connect Snake with complicated topology of objects. It is shown by experiment of two test images with 3 and 5 objects that the proposed one works better than the nearest one.

Document Embedding for Entity Linking in Social Media (문서 임베딩을 이용한 소셜 미디어 문장의 개체 연결)

  • Park, Youngmin;Jeong, Soyun;Lee, Jeong-Eom;Shin, Dongsoo;Kim, Seona;Seo, Junyun
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.194-196
    • /
    • 2017
  • 기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.

  • PDF

SVDD based Scene Understanding using Color Space Information (색 공간 정보를 이용한 지지벡터 영역 묘사 기반의 장면 이해)

  • Kim, Soo-Wan;Chang, Hyung-Jin;Kang, Woo-Sung;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.264-265
    • /
    • 2008
  • 기존 영상감시 시스템의 물체 탐지 알고리즘은 주로 배경 모델링 기법을 기반으로 하고 있다. 이 기법은 차영상 기법보다는 성능이 뛰어나기는 하지만 여전히 정지 카메라에서만 활용이 가능하고, 주변 환경에 따라 알고리즘 상의 많은 임계값을 현재 상황에 맞춰 일일이 조절해 주어야 한다는 한계점이 있다. 따라서 이 논문에서는 배경모델링 기법을 사용하지 않고 입력되는 영상의 Color 정보를 이용하여 영상 내에 있는 여러 대상을 직접 판단하여 관심 있는 물체를 탐지하는 방법을 제안하고자 한다. 제안된 알고리즘은 먼저 현재의 영상을 하나의 물체로 추정되는 영역이 하나의 영역으로 구분되어지게 간단하게 분할해낸다 그리고 나누어진 영역마다 대표 Color 값을 계산하여 미리 학습된 데이터를 기준으로 Support Vector Domain Description (SVDD) 알고리즘을 사용하여 구별해내고 그 결과를 바탕으로 영역이 무엇인지를 판별해낸다. 이 방법은 정지되어 있는 카메라뿐만 아니라 움직이는 카메라 상에서도 사용되어질 수 있으며 알고리즘 상에서 사용되는 임계값의 종류가 적기 때문에 많은 상황에서 일반적으로 쓰일 수 있다.

  • PDF