• Title/Summary/Keyword: 대표 벡터

Search Result 300, Processing Time 0.029 seconds

DOCST: Document frequency Oriented Clustering for Short Texts (가중치를 이용한 효과적인 항공 단문 군집 방법)

  • Kim, Jooyoung;Lee, Jimin;An, Soonhong;Lee, Hoonsuk
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.331-334
    • /
    • 2018
  • 비정형 데이터의 대표적인 형태 중 하나인 텍스트 데이터 기계학습은 다양한 산업군에서 활용되고 있다. NOTAM 은 하루에 수 천개씩 생성되는 항공전문으로써 현재는 사람의 수작업으로 분석하고 있다. 기계학습을 통해 업무 효율성을 기대할 수 있는 반면, 축약어가 혼재된 단문이라는 데이터의 특성상 일반적인 분석에 어려움이 있다. 본 연구에서는, 데이터의 크기가 크지 않고, 축약어가 혼재되어 있으며, 문장의 길이가 매우 짧은 문서들을 군집화하는 방법을 제안한다. 주제를 기준으로 문서를 분류하는 LDA 와, 단어를 k 차원의 벡터공간에 표현하는 Word2Vec 를 활용하여 잡음이 포함된 단문 데이터에서도 효율적으로 문서를 군집화 할 수 있다.

Design and implementation of a classification method for time series body sensor data (시계열 인체 센서 데이터의 분류화 기법의 설계와 구현)

  • Han, Xiaoyue;Maeng, Boyeon;Lee, Minsoo
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.140-141
    • /
    • 2010
  • 무선 통신의 발달과 센서 장비의 소형화로 인하여 다양한 인체 센서들이 개발되고 있으며 이에 따라 이들 인체 센서로부터 생성되는 데이터를 누적하여 분석 및 예측을 해야 할 필요성이 증가하고 있다. 본 연구에서는 누적된 인체 센서 데이터에 대한 분류화 기법을 제안하여 구현하고 성능을 검증하였다. 분류화 기법은 인체 센서 데이터에 잘 적용될 수 있는 지지벡터 기계를 활용하여 구현하였다. 인체 센서 데이터의 대표패턴 정의와 실험을 위한 잡음 생성을 통하여 분류화 정확도를 높일 수 있도록 실험을 설계하였고 다양한 설정 변수에서도 기법을 실험하여 빠르고 정확한 기법을 설계 및 구현하였다.

Color enhancement based on nonlinear function (비선형 함수를 이용한 컬러 영상 개선)

  • Park, Chan-Woo;Kim, Yong-Min;Park, Ki-Tae;Moon, Young-Shik
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.376-377
    • /
    • 2011
  • 일반적으로 저조도 환경에서 촬영된 영상에서 컬러의 정보를 식별하는 것은 어렵다. 기존의 대표적인 영상 개선의 방법인 레티넥스(Retinex)는 연산량이 많고 원본 영상의 컬러 정보를 정확히 반영하지 못하는 문제점이 있다. 따라서, 본 논문에서는 저조도 환경에서 촬영된 영상에 대해 컬러의 왜곡 문제를 개선하기 위하여 비선형 함수와 RGB 컬러 공간에서의 벡터 상수곱을 이용한 실시간 영상 개선 방법을 제안한다.

Emotion-Based Music Retrieval using MPEG-7 Audio Descriptors (MPEG-7 오디오 특징을 이용한 감성기반 음악검색)

  • Lim, Jee-Hye;Lee, Joon-Whoan
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.334-337
    • /
    • 2011
  • 음원의 디지털화와 다양한 디지털 기기의 보급으로 인해 사용자는 더욱 쉽게 많은 양의 음악을 접할 수 있게 되었다. 많은 양의 음원중에서 사용자 개개인의 성향에 맞는 음악을 검색하기 위해 내용기반 음악검색과 감성기반 음악검색 방법 등이 제안되고 개발되고 있다. 본 논문에서는 감성기반 음악검색방법에서 다차원 벡터 형태의 MPEG-7 저수준 오디오 서술자들의 중요도를 결정하기 위한 새로운 방법을 제안하였다. 제안된 방법은 한 쌍의 대립되는 감성을 대표하는 음악들의 유사성을 다차원 서술자의 관점에서 측정한다. 그리고 이 유사관계를 러프 근사화와 군집 내/군집 간의 유사성 비율을 이용하여 서술자의 중요성을 결정하는데 사용한다. 이 중요성을 바탕으로 결정된 가중치는 여러 개의 오디오 서술자들의 유사성을 총체화하여 감성기반 음악검색에 이용된다.

An Exploratory Study on Daily Activity Types based on Life-logging Data (라이프로그 기반 일상생활 활동유형에 대한 탐색적 연구)

  • Lim, Hoyeon;Chung, Seungeun;Jeong, Chi Yoon;Jeong, Hyun-Tae
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.761-764
    • /
    • 2020
  • 본 논문에서는 라이프로그 데이터를 기반으로 한 행동인식 결과로부터 일상생활의 활동유형을 분석하는 기술에 대해 제안한다. 실제 일상생활 중에 수집한 가속도 센서 데이터만을 이용하여 분석한 행동인식 결과를 정적-동적 행동으로 분류된 특징 벡터로 나타내었고, 이를 클러스터링하여 6개의 대표 활동유형으로 분류하였다. 50명의 사용자 데이터를 분석하여 정적-동적 활동의 비율에 따른 활동유형을 분류함으로써 실제 라이프로그 데이터로부터 일상생활 활동유형을 확인하였다.

Patent-Based Similar Company Recommendation Model (특허 기반 유사기업 추천 모델)

  • Gwangseon Jang;Hyun Ji Jeong;Yunjeong Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.495-497
    • /
    • 2023
  • 본 연구는 기업 간 협력과 경쟁력 강화를 위한 특허 기반 유사 기업 추천 모델을 제안한다. 제안 모델은 특허 데이터와 한국표준산업분류(KSIC) 정보를 활용하여, 특허 정보를 기반으로 기업 간 유사성을 평가하고 유사한 기업을 추천한다. 제안 모델은 특허 초록 정보와 한국표준산업분류를 사용하여 기술 측면에서 기업별 특성을 고려한 기업 대표 벡터를 생성한다. 또한, 기업의 특허 수를 고려하여 정확한 유사기업 추천을 제공합니다. 제안 모델은 기업들이 협력 파트너를 찾고 새로운 비즈니스 기회를 모색하는 데에 도움을 줄 수 있으며, 현재는 NTIS(www.ntis.go.kr)의 분류기반 특허분석 서비스에서 사용 중이다.

Extracting Typical Group Preferences through User-Item Optimization and User Profiles in Collaborative Filtering System (사용자-상품 행렬의 최적화와 협력적 사용자 프로파일을 이용한 그룹의 대표 선호도 추출)

  • Ko Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.581-591
    • /
    • 2005
  • Collaborative filtering systems have problems involving sparsity and the provision of recommendations by making correlations between only two users' preferences. These systems recommend items based only on the preferences without taking in to account the contents of the items. As a result, the accuracy of recommendations depends on the data from user-rated items. When users rate items, it can be expected that not all users ran do so earnestly. This brings down the accuracy of recommendations. This paper proposes a collaborative recommendation method for extracting typical group preferences using user-item matrix optimization and user profiles in collaborative tittering systems. The method excludes unproven users by using entropy based on data from user-rated items and groups users into clusters after generating user profiles, and then extracts typical group preferences. The proposed method generates collaborative user profiles by using association word mining to reflect contents as well as preferences of items and groups users into clusters based on the profiles by using the vector space model and the K-means algorithm. To compensate for the shortcoming of providing recommendations using correlations between only two user preferences, the proposed method extracts typical preferences of groups using the entropy theory The typical preferences are extracted by combining user entropies with item preferences. The recommender system using typical group preferences solves the problem caused by recommendations based on preferences rated incorrectly by users and reduces time for retrieving the most similar users in groups.

A Study on Number Setting of Competitive Layer using fuzzy Control Method for Enhanced Counterpropagation Algorithm (개선된 Counterpropagation 알고리즘에서 퍼지 제어 기법을 이용한 경쟁층의 수 설정에 관한 연구)

  • Kim, Tae-Hyung;Cho, Jae-Hyun;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.359-365
    • /
    • 2008
  • CP(Counterpropagation)알고리즘은 서로 다른 두 개의 신경망이 하나로 결합 된 혼합형 모델로서, 다른 신경망 모델에 비해 비교적 단순하고 빠른 학습 속도를 보인다. 그러나 CP 알고리즘은 다양한 패턴이 입력되면 충분한 경쟁층의 수가 설정되지 않아 학습이 불안정하고, 출력층에서 연결강도를 조정할 때 일반적인 학습률 조정방법으로 불안정한 학습 결과를 보인다. 이러한 문제점을 해결하기 위해 다수의 경쟁층을 설정하여 경쟁층에서 패턴 분류의 정확성을 높이고, 입력 벡터와 승자 뉴런의 대표 벡터간의 차이와 승자 빈도수를 반영하여 학습률을 동적으로 조정하여 경쟁층에서의 학습이 안정적으로 진행되도록 하고, 출력층에서 연결강도를 조정할 때 모멘텀(momentum)학습법을 적용한 개선된 CP 알고리즘이 제안되었다. 본 논문에서는 개선된 CP 알고리즘에서 경쟁층의 수를 효율적으로 설정하기 위해 퍼지 제어 기법을 이용하여 경쟁층의 수를 결정하는 방법을 제안한다. 제안된 방법은 CP 알고리즘에 입력되는 패턴의 정보를 이용하여 퍼지 소속 함수를 설계하고 입력에 대한 소속도를 계산한 후, 퍼지 제어 규칙을 적용하고, Mamdani의 Min_Max 추론 방법으로 추론한다. 퍼지 추론을 통해 최종적으로 얻어진 값을 무게 중심법으로 비퍼지화 하여 최종적으로 개선된 CP 알고리즘의 경쟁층의 수를 결정하는데 적용한다. 제안된 방법의 학습 및 인식 성능을 평가하기 위해, 숫자, 영어 등과 같이 다양한 패턴을 실험에 적용한 결과, 제안된 방법이 경쟁층의 수를 결정하는데 효과적임을 확인할 수 있었다.

  • PDF

Decision of Gaussian Function Threshold for Image Segmentation (영상분할을 위한 혼합 가우시안 함수 임계 값 결정)

  • Jung, Yong-Gyu;Choi, Gyoo-Seok;Heo, Go-Eun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.163-168
    • /
    • 2009
  • Most image segmentation methods are to represent observed feature vectors at each pixel, which are assumed as appropriated probability models. These models can be used by statistical estimating or likelihood clustering algorithms of feature vectors. EM algorithms have some calculation problems of maximum likelihood for unknown parameters from incomplete data and maximum value in post probability distribution. First, the performance is dependent upon starting positions and likelihood functions are converged on local maximum values. To solve these problems, we mixed the Gausian function and histogram at all the level values at the image, which are proposed most suitable image segmentation methods. This proposed algoritms are confirmed to classify most edges clearly and variously, which are implemented to MFC programs.

  • PDF

The Application of Direction Vector Function for Multi Agents Strategy and The Route Recommendation System Research in A Dynamic Environment (멀티에이전트 전략을 위한 방향벡터 함수 활용과 동적 환경에 적응하는 경로 추천시스템에 관한 연구)

  • Kim, Hyun;Chung, Tae-Choong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.78-85
    • /
    • 2011
  • In this paper, a research on multi-agent is carried out in order to develop a system that can provide drivers with real-time route recommendation by reflecting Dynamic Environment Information which acts as an agent in charge of Driver's trait, road condition and Route recommendation system. DEI is equivalent to number of n multi-agent and is an environment variable which is used in route recommendation system with optimal routes for drivers. Route recommendation system which reflects DEI can be considered as a new field of topic in multi-agent research. The representative research of Multi-agent, the Prey Pursuit Problem, was used to generate a fresh solution. In this thesis paper, you will be able to find the effort of indulging the lack of Prey Pursuit Problem,, which ignored practicality. Compared to the experiment, it was provided a real practical experiment applying the algorithm, the new Ant-Q method, plus a comparison between the strategies of the established direction vector was put into effect. Together with these methods, the increase of the efficiency was able to be proved.