• Title/Summary/Keyword: 대체전단변형률장

Search Result 6, Processing Time 0.023 seconds

Development of an efficient 3-node plate bending element by using the Hellinger-Reissner functional (Hellinger-Reissner 범함수를 이용한 효율적인 3절점 판 유한요소의 개발)

  • Lee, Youn-Gyu;Choi, Chang-Koon;Lee, Phill-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.760-763
    • /
    • 2011
  • 본 논문의 목적은 효율적인 3절점 판 유한요소를 개발하는 것이다. Hellinger-Reissner 범함수에 근거한 혼합정식화(mixed formulation)를 사용한다. 잠김현상을 일으키는 전단변형률장을 독립적으로 분리한 후, MITC(Mixed Interpolation of Tensorial Components)방법을 이용하여 대체전단변형률장(assumed transverse shear strain field)을 구성한다. 추가적으로 회전된 반변기저벡터(contravariant base vector)로 정의된 근사전단변형률장(approximated transverse shear strain field)에 미지수(unknowns)를 도입하여 혼합정식화를 완성시키고 정적응축(static condensation)을 통해 최종 강성행렬을 구성한다. 거짓영에너지모드시험(spurious zero energy mode test), 조각시험(patch test), 등방성시험(isotropic test) 등을 실시하였으며, 4변 완전구속 정사각형 판 구조물과 60도 기울어진 단순지지 판 구조물 등 예제들을 해석하여 MITC3판 유한요소와 수렴성능을 비교하였다.

  • PDF

A Four-node General Shell Element with Drilling DOFs (면내회전자유도를 갖는 4절점 곡면 쉘요소)

  • Chung, Keun-Young;Kim, Jae-Min;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.37-52
    • /
    • 2012
  • In this study, a new 4-node general shell element with 6 DOFs per node is presented. Drilling rotational degrees of freedom are introduced by the variational principle with an independent rotation field. In formulation of the element, substitute transverse shear strain fields are used to avoid shear locking, while four nonconforming modes are applied in the in-plane displacement fields as a remedy for membrane locking. In addition, a direct modification method for nonconforming modes is employed in the numerical implementation of nonconforming modes to represent constant strain states. A 9-points integration rule is adopted for volume integration in the computation of the element stiffness matrix. With the combined use of these techniques, the developed shell element has no spurious zero energy modes, and can represent a constant strain state. Several numerical tests are carried out to evaluate the performance of the new element developed. The test results show that the behavior of the elements is satisfactory.

Estimation of the Moving Load Velocity Using Micro Genetic Algorithm (마이크로 유전 알고리즘을 이용한 교통하중의 속도추정)

  • Tak, Moon-Ho;Noh, Myung-Hyun;Park, Tae-Hyo;Park, In-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.292-295
    • /
    • 2009
  • 본 논문에서는 평판구조물의 정적 및 동적해석에 사용할 목적으로 성능이 향상된 평판유한요소를 제시하였다. 이 요소는 비적합변위형과 선택적 감차적분방법 그리고 대체전단변형률장을 복합적으로 적용하여 각각의 장점들을 포함하는 향상된 거동을 보여주고 있다. 또한 비적합변위형의 적용으로 발생되는 조각시험의 실패 문제점을 해결하기 위하여 직접수정법을 평판유한요소의 개선에 사용하였다. 대표적인 검증문제에 대한 수치해석작업을 통하여 본 연구에서 개발한 요소는 가상적인 제로에너지모드 및 전단잠김현상의 발생과 같은 문제를 나타내지 않음을 알 수 있었다. 특히 찌그러진 형상으로 모형화 한 경우에 있어서도 전단잠김현상이 발생하지 않았다. 본 연구에서 수행한 동적반응해석 시험에 있어서도 이론해와 잘 일치하는 결과를 보여주었다.

  • PDF

Analysis of Laminated Composite Stiffened Plates with arbitrary orientation stiffener (임의방향 보강재를 가지는 복합적층 보강판의 해석)

  • Yhim, Sung-Soon;Chang, Suk-Yoon;Park, Dae-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.147-158
    • /
    • 2004
  • For stiffened plates composed of composite materials, many researchers have used a finite element method which connected isoparametric plate elements and beam elements. However, the finite element method is difficult to reflect local behavior of stiffener because beam elements are transferred stiffness for nodal point of plate elements, especially the application is limited in case of laminated composite structures. In this paper, for analysis of laminated composite stiffened plates, 3D shell elements for stiffener and plate are employed. Reissner-Mindlin's first order shear deformation theory is considered in this study. But when thickness will be thin, isoparamatric plate bending element based on the theory of Reissner-Mindlin is generated by transverse shear locking. To eliminate the shear locking and virtual zero energy mode, the substitute shear strain field is used. A deflection distribution is investigated for simple supported rectangular and skew stiffened laminated composite plates with arbitrary orientation stiffener as not only variation of slenderness and aspect ratio of the plate but also variation of skew angle of skew stiffened plates.

Static and Dynamic Analysis of Plate Structures using a High Performance Finite Element (고성능 유한요소를 이용한 평판구조물의 정적 및 동적해석)

  • Han In-Seon;Kim Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.311-320
    • /
    • 2005
  • In this paper an enhanced quadratic finite element for static and dynamic analysis of plate structures is presented. The performance of a proposed plate element is improved by the coupled use of non conforming displacement modes, the selective integration scheme, and the assumed shear strain fields. An efficient direct modification method is also applied to this element to solve the problem such as failure of the patch test due to the adoption of non conforming modes. The proposed quadratic finite element does not show any spurious mechanism and does not produce shear locking phenomena even with distorted meshes. It is shown that the results obtained by this element converged to analytical solutions very rapidly tough numerical tests for standard benchmark problems. It is also noted that this element is applicable to transient dynamic analysis of Mindlin plates.

Study on Buckling of Composite Laminated Cylindrical Shells with Transverse Rib (횡리브로 보강된 복합적층 원통형 쉘의 좌굴거동에 관한 연구)

  • Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.493-500
    • /
    • 2004
  • In this study, the effects of ring stiffeners for buckling of cylindrical shells with composite materials were analyzed. The finite element method was used: 3-D beam elements were used for stiffeners and flat shell elements were used for cylindrical shells and were improved by introducing a substitute shear strain. The ring stiffeners were of the transverse rib type. The buckling behaviors of the cylindrical shells were analyzed based on various parameters, such as locations and sizes of stiffeners, diameter/length ratios and boundary conditions of shells, and fiber-reinforced angles. Effective reinforcement was examined by understanding the exact behaviors for buckling. The results of the analysis may serve as references for designs and future investigations.