• Title/Summary/Keyword: 대지 임피던스

Search Result 37, Processing Time 0.025 seconds

Frequency-Dependent Grounding Impedances of Counterpoises Associated with Soil Resistivity (대지저항률에 따른 매설지선의 접지임피던스의 주파수의존성)

  • Kim, Tae-Ki;Choi, Young-Chul;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.114-121
    • /
    • 2010
  • This paper deals with the frequency-dependent grounding impedances of counterpoises relevant to the soil resistivity, the length of counterpoises and the feeding point of test current. The grounding impedances of counterpoises buried in one-layered and two-layered soils were measured and analyzed in the frequency range from 1[kHz] to 10[MHz]. As a result, the frequency-dependent grounding impedances strongly depend on the soil resistivity, and the grounding impedances within the frequency of several tens [kHz] are capacitive behavior in high soil resistivity. When injecting the ground current to the end of counterpoise buried in soil with high resistivity, the grounding impedances in high frequency are increased.

Conventional Grounding Impedance according to the Length and Soil Resistivity of the vertical grounding electrode (수직접지전극의 길이와 대지저항률에 따른 규약접지임피던스 분석)

  • Choi, Jong-Hyuk;Shin, Hee-Gyung;Lee, Bok-Hee;Kim, Tae-Ki;Ahn, Chang-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1568-1569
    • /
    • 2011
  • 최근 기후변화로 인해 낙뢰의 발생빈도가 크게 증가하고 있으며 이에 따라 피뢰시스템의 중요성이 부각되고 있다. 피뢰시스템의 원활한 기능을 수행하기 위해 접지시스템의 성능이 보장되어야 하며, 접지전극은 뇌격전류를 안전하게 대지로 방류시켜야 한다. 본 논문에서는 피뢰시스템에서 가장 흔하게 사용되는 수직접지전극을 대상으로 서지전류가 인가되었을 때 접지전극이 묻힌 대지저항률, 접지전극의 길이, 서지 전류의 파두시간 등에 따른 규약접지임피던스를 측정하고 그 특성을 분석하였다. 그 결과 대지저항률이 높은 토양과 접지전극의 길이가 짧은 경우 접지임피던스가 감소하는 용량성 특성이 지배적으로 나타나며, 대지저항률이 작고 접지전극의 길이가 긴 경우 접지임피던스가 증가하는 유도성 특성이 지배적으로 나타났다. 따라서 피뢰시스템을 위한 접지시스템 설계 시 대지저항률 및 접지전극의 길이를 고려하여 유도성 특성을 최소화 할 수 있도록 설계해야 한다.

  • PDF

Characteristics of Neutral Point Loci on Line Voltages to Hull When Insulation Resistance Collapses by Earthing Faults at 3 Phase Power Distribution Systems Onboard Vessels (선박 3상배전선로의 지락고장에 따른 대지전압 중성점의 이동경로 특성)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1117-1123
    • /
    • 2011
  • Ungrounded power systems are adopted onboard vessels which enable more stabilized power supply even in case of electric leakage to hull. If earthing faults happen at these systems, they make grounding impedances of power lines unbalanced each other on the three phases, resulting in high voltages to hull which can bring more possibilities of electric shocks and electric fires. This study focuses on how to configure a calculation module for transferring a grounded condition by lowered insulation resistance into a vector diagram of the voltages to hull. By using the module, the loci of neutral points were acquired to analyze how voltages to hull are affected by earthing faults and the distributed capacitances between power lines and hull. The suggested module was simulated and compared to the measured values from a test power system in good results.

Configuration of a Module for Monitoring Voltages Between Power Lines and Hull Onboard Vessels Based on the Vector Diagram at 3 Phase Ungrounded Power Distribution System (비접지 선박 3상 배전선로의 대지전압 벡터 모니터링 장치의 구성)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1111-1116
    • /
    • 2011
  • Power distribution systems onboard vessels are typically configured without any live line connected to hulls for earthing purpose, where the line to hull voltages are affected and deformed depending on the impedances consisting of insulation resistances and distributed capacitances between power lines and hull. An insulation fault at power lines causes the line to hull voltages to increase to a higher level which brings more possibilities to electric shock and deterioration of insulation material. This study focuses on how to configure a module which enables to continuously monitor the voltages between power line and hull based on the vector diagram by analyzing the neutral point of 3 phase voltages and the algorithm for plotting method on the PC monitors.

Numerical Calculation for Input Impedance of a Conductor Located in the Loss Media (손실 매질에 위치한 도체의 입력임피던스 수치계산)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.230-236
    • /
    • 2013
  • This paper presents the numerical calculation for input impedance of a conductor located in the loss media by using the program with MATLAB. The input impedances of the conductor were numerically calculated with the moment of method. To increase an accuracy of results, the Galerkin's method which both the basic function and the weight function are the triangle function was applied. And by applying the modified image method, image sources of the conductor located in air were considered. According to the comparison between the current distributions at the conductor which were calculated with the MATLAB program and the NEC program, the reliability of the self-made program with MATLAB was obtained. In case of the conductor located in soil, which length are 1 m and 2 m, the input impedance were simulated as a function of both a conductivity and a frequency. Finally, input impedances and phases of the conductor located in soil were measured, and those results were compared with simulated results which calculated under the same conditions.

Characteristics Analysis of Transient Impedances of Small-sized Ground Electrodes in a Ionization Region of Soil (토양의 이온화영역에서 소규모 접지전극의 과도접지임피던스 특성 분석)

  • Yoo, Yang-Woo;Eom, Ju-Hong;Cho, Sung-Chul;Lee, Tae-Hyung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.78-84
    • /
    • 2009
  • This paper presents measurement results of transient impedance for small-sized ground electrodes in a discharge region of soil. For a realistic analysis of ionization characteristics near the ground electrode, three types of ground rod installed outdoors and high voltage impulse generator were used for injecting test current. From the analysis of response voltage and current flowing ground electrode to earth, it is verified that the ionization near the ground electrode contributes to reduction of ground impedance and limits the ground potential rise effectively in high resistivity soil. As a threshold electric field density for ionization is small in low resistivity soil, the shape of ground electrode rarely contributes to the transient impedance. And, from the experiment result with shape of ground electrode, the rod with needles is more effective to reduce the transient impedance than the plate electrode in the voltage range including with ionization regions of soil.

A Study on How to Lower the Grounding Impedance by Needles-typed Grounding Rods (접지침봉에 의한 접지임피던스를 낮추는 방안 연구)

  • Park, Sung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • Purpose: One of the methods for preventing disasters such as fire, explosion, and electric shock caused by electricity is to perform grounding. In case of the grounding current includes a frequency component having a high, it is preferable to measure grounding impedance rather than grounding resistance. This study proposes countermeasures to reduce grounding impedance to suppress an ground potential rise due to a grounding current having a frequency component of several kHz or more. Method: General grounding rods and needles-typed grounding rods were buried in the ground, and grounding resistance and grounding impedance were measured, respectively. The characteristics of grounding impedance according to frequency were identified. Result: There was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range lower than 62.5kHz, there was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range higher than 62.5kHz, the grounding impedance of needles-typed grounding rods was reduced by about 15% than the grounding impedance of general grounding rods. Conclusion: In the commercial frequency domain, it is effective to connect several grounding rods (common grounding) to lower the grounding resistance value. In the frequency domain of several kHz or more, it is expected that needles-typed grounding rods can effectively reduce the ground potential rise due to the grounding current.

Computation of the Critical Lengths of the Vertical Grounding Electrode in Multi-Layered Soil Structures (다층 대지구조에서 수직 접지전극의 임계길이 산정)

  • Kim, Ki-Bok;Joe, Jeong-Hyeon;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • The grounding impedance is not lowered by expanding the dimension of the grounding electrode, and the length of grounding electrode which shows the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical Length. In this paper, a new distributed parameter circuit model considering the condition of the multi-layered soil structures was proposed, and the grounding impedance and critical length of the vertical grounding electrode were analyzed by using the newly proposed simulation model and the MATLAB program. As a consequence, it was found that the effect of the soil structure on the frequency-dependent grounding impedance and critical length of the vertical grounding electrode is significant. It is desirable to consider the soil structure in optimal design of the grounding system.

Characteristics of Transient Grounding Impedances of Counterpoises Relevant to the Injected Point of Impulse Currents (임펄스전류의 인가위치에 따른 매설지선의 과도접지임피던스 특성)

  • Li, Feng;Jung, Dong-Chul;Kim, Jong-Ho;Yoo, Jae-Duk;Kim, Dong-Kyu;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.62-69
    • /
    • 2010
  • This paper presents the dependances of transient grounding impedances of counterpoises on the soil structures and the injected point of impulse currents. The transient and conventional grounding impedances of the 25 and 50[m] counterpoises buried in the soil with different resistivity were measured and analyzed as a function of the rise time of impulse currents. As a result, the transient grounding impedances give an inductive behavior, and the trend of the conventional grounding impedances is similar to that of the transient grounding impedances. The ground resistance of counterpoises is irrespective to the injected of impulse current, but the transient and conventional grounding impedances in a short time range especially depend on the soil resistivity and position of the injected point of impulse currents.

Dangerous Voltage Measurements of Substations (변전소의 위험전압 측정)

  • Kim, Jae-Yee;Yun, Tae-Yang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.187-189
    • /
    • 2002
  • 일반적으로 상용주파수에서의 대지는 입력전류의 크기에 따라 일정한 저항체로 다루어 질 수 있으며, 접지도체 임피던스도 무시할 수 있고 접지도체 전체가 등전위로 볼 수 있다. 그러나 써어지 전류 유입시에는 주파수가 수백 MHz 이므로 접지도체 임피던스에 의한 전압강하가 크게 될 뿐 아니라 써어지 전류 유입점의 도체전위가 매우 많이 상승하게 된다. 따라서, 본 논문에서는 운전중인 변전소 안전측면에서 접지임피던스와 보폭 및 접촉전압 등의 위험전압측정을 통한 안전성을 검토하였다.

  • PDF