• Title/Summary/Keyword: 대용량 저장장치

Search Result 248, Processing Time 0.025 seconds

Design Low-power Power Management Module for Long-term Energy Harvesting (장시간 에너지 수확을 위한 저전력 전원관리모듈 설계)

  • Ha, Hyoung-uk;Kim, Sung il;Kim, Jong-Kook
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.40-41
    • /
    • 2012
  • 친환경 에너지가 이슈가 되면서 버려지는 에너지를 유용하게 사용하는 에너지 수확기술에 대한 연구가 진행되고 있다. 특히 밀도가 낮은 에너지를 수집하여 저장하는 장치에 대한 연구가 활발하다. 하지만 대부분의 전원관리 회로가 수동적인 회로로 이루어져 있어 여러 상황에 대처하기에는 부족함이 있다. 본 논문은 저전력 마이크로프로세서를 이용하여 계속적으로 배터리 대용의 대용량 캐패시터의 전압을 점검, 관리하는 시스템을 제안하고자 한다. 이를 통하여 변화하는 환경에 맞추어 캐패시터의 전압 수준을 효과적으로 제어할 수 있을 것으로 예상한다.

Adaptive Mapping Information Management Scheme for High Performance Large Sale Flash Memory Storages (고성능 대용량 플래시 메모리 저장장치의 효과적인 매핑정보 캐싱을 위한 적응적 매핑정보 관리기법)

  • Lee, Yongju;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyeong;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.78-87
    • /
    • 2013
  • NAND flash memory has been widely used as a storage medium in mobile devices, PCs, and workstations due to its advantages such as low power consumption, high performance, and random accessability compared to a hard disk drive. However, NAND flash cannot support in-place update so that it is mandatory to erase the entire block before overwriting the corresponding page. In order to overcome this drawback, flash storages need a software support, named Flash Translation Layer. However, as the high performance mass NAND flash memory is getting widely used, the size of mapping tables is increasing more than the limited DRAM size. In this paper, we propose an adaptive mapping information caching algorithm based on page mapping to solve this DRAM space shortage problem. Our algorithm uses a mapping information caching scheme which minimize the flash memory access frequency based on the analysis of several workloads. The experimental results show that the proposed algorithm can increase the performance by up to 70% comparing with the previous mapping information caching algorithm.

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.

Performance Analysis of NVMe SSDs and Design of Direct Access Engine on Virtualized Environment (가상화 환경에서 NVMe SSD 성능 분석 및 직접 접근 엔진 개발)

  • Kim, Sewoog;Choi, Jongmoo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • NVMe(Non-Volatile Memory Express) SSD(Solid State Drive) is a high-performance storage that makes use of flash memory as a storage cell, PCIe as an interface and NVMe as a protocol on the interface. It supports multiple I/O queues which makes it feasible to process parallel-I/Os on multi-core environments and to provide higher bandwidth than SATA SSDs. Hence, NVMe SSD is considered as a next generation-storage for data-center and cloud computing system. However, in the virtualization system, the performance of NVMe SSD is not fully utilized due to the bottleneck of the software I/O stack. Especially, when it uses I/O stack of the hypervisor or the host operating system like Xen and KVM, I/O performance degrades seriously due to doubled-I/O stack between host and virtual machine. In this paper, we propose a new I/O engine, called Direct-AIO (Direct-Asynchronous I/O) engine, that can access NVMe SSD directly for I/O performance improvements on QEMU emulator. We develop our proposed I/O engine and analyze I/O performance differences between the existed I/O engine and Direct-AIO engine.

An Efficient Dual Queue Strategy for Improving Storage System Response Times (저장시스템의 응답 시간 개선을 위한 효율적인 이중 큐 전략)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2024
  • Recent advances in large-scale data processing technologies such as big data, cloud computing, and artificial intelligence have increased the demand for high-performance storage devices in data centers and enterprise environments. In particular, the fast data response speed of storage devices is a key factor that determines the overall system performance. Solid state drives (SSDs) based on the Non-Volatile Memory Express (NVMe) interface are gaining traction, but new bottlenecks are emerging in the process of handling large data input and output requests from multiple hosts simultaneously. SSDs typically process host requests by sequentially stacking them in an internal queue. When long transfer length requests are processed first, shorter requests wait longer, increasing the average response time. To solve this problem, data transfer timeout and data partitioning methods have been proposed, but they do not provide a fundamental solution. In this paper, we propose a dual queue based scheduling scheme (DQBS), which manages the data transfer order based on the request order in one queue and the transfer length in the other queue. Then, the request time and transmission length are comprehensively considered to determine the efficient data transmission order. This enables the balanced processing of long and short requests, thus reducing the overall average response time. The simulation results show that the proposed method outperforms the existing sequential processing method. This study presents a scheduling technique that maximizes data transfer efficiency in a high-performance SSD environment, which is expected to contribute to the development of next-generation high-performance storage systems

A Method to Manage Local Storage Capacity Using Data Locality Mechanism (데이터 지역성 메커니즘을 이용한 지역 스토리지 용량 관리 방법)

  • Kim, Baul;Ku, Mino;Min, Dugki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.324-327
    • /
    • 2013
  • Recently, due to evolving cloud computing technology, we can easily and transparently utilize both local computing resource and remote computing resource in real life. Especially, enhancing smart device technologies and network infrastructures promote an increase of needs to share files between local smart devices and cloud storages. However, since smart devices have a limited storage space, storing files on cloud storage causes a starvation problem of local storage. It means that users can face a storage-lack problem even a cloud storage service provide a huge file storing space. In this research, we propose a method to manage files between smart devices and cloud storages. Our approach calculate file usage pattern based on recently used date, and then this approach determines local files being migrated. As a result, our approach is sufficient for handling data synchronization between big data storage farm and local thin client which contains limited storage space.

  • PDF

Design and Implementation of a Backup System for Digital Contents (디지털콘텐츠의 특성을 고려한 백업 시스템의 설계 및 구현)

  • Lee Seok Jae;Yun Jong Hyun;Hwang Sok Choel;Yoo Jae Soo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.105-116
    • /
    • 2006
  • With the development of IT technology, the amount of digital contents used in various environments of wired/wireless networks have been increased hugely and rapidly To protect the loss of the digital contents from the sudden accident, continuous data backup is required. In this paper, we design and implement the backup system that stores digital contents in backup storage by objectifying the contents with a unit of I/O size and giving them the unique E using the properties of digital contents to avoid duplicated store of the same data. The backup system reduces the amount of backup data efficiently by backing up the only one copy of the duplicated data. as a result, the backup system can back up the digital contents more efficiently in a constrained storage space.

  • PDF

용해 납 흐름 배터리용 여러 카본 전극의 에너지 효율 특성 비교

  • Min, Hyeong-Seop;Yang, Min-Gyu;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.59.1-59.1
    • /
    • 2009
  • 레독스 흐름 배터리 (Redox Flow Battery)는 외부의 탱크 등에 저장해 둔 활성물질(이온 가수가 변화는 금속) 의 용액을 펌프로 전해셀에 공급하여 충전 방전하는 배터리로 신재생 에너지인 풍력과 태양광 발전, 야간의 잉여 전력 저장 등 대용량 전력 저장 장치로 관심이 높아지고 있다. 대표적인 레독스 흐름 배터리로 알려진 바나듐 레독스 흐름 배터리는 이온 교환막 사용으로 인하여 전기전도도, 기계적 강도, 투과도 및 전해질 내의 화학적 안정성 등 여러 가지 문제점과 함께 비용 문제점을 야기한다. 하지만 새로운 용해 납 레독스 흐름 배터리는 이온 교환막을 사용하지 않아 바나듐 레독스 흐름 배터리의 문제점 및 시설비가 절약되는 장점이 있어 새로이 연구되지고 있다. 본 연구는 레독스 흐름 배터리에 주로 이용되는 카본 전극재료의 따라 형성되는 Pb, $PbO_2$ 박막의 미세 구조를 및 에너지 효율 특성을 분석하였다. 실험은 half-cell로 이루어졌으며 작업전극은 Carbon felt, Ordered Graphite, Disordered Graphite, Glassy Carbon 등을 여러 카본 재료를 사용하였고, 상대전극은 Pt, 기준전극으로 Ag/AgCl를 사용하여 Cyclic Voltammetry특성과 충방전 특성을 연구하였다. 전해질은 Lead Carbonate ($PbCO_3$)+Methanesulfonic acid ($CH_3SO_3H$) 들어간 수용성 전해질을 교반을 통해 이용하였다. 여러 carbon 전극재료와 생성된 Pb, $PbO_2$ 막의 표면구조, 미세구조, 상들의 변화는 XRD, SEM, EDX, Raman등을 통하여 분석하였으며, 전기화학 공정의 변수와 전극에 따른 에너지 효율특성에 대하여 고찰해 보았다.

  • PDF

Smart Device based ECG Sensing IoT Applications (스마트 디바이스 기반 ECG 감지 IoT 응용 서비스에 관한 연구)

  • Mariappan, Vinayagam;Lee, Seungyoun;Lee, Junghoon;Lee, Juyoung;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.18-23
    • /
    • 2016
  • Internet of things (IoT) is revolutionizing in the patient-Centered medical monitoring and management by authorizing the Smartphone application and data analysis with medical centers. The network connectivity is basic requirement to collect the observed human beings' health information from Smartphone to monitor the health from IoT medical devices in personal healthcare. The IoT environment built in Smartphone is very effective and does not demand infrastructure. This paper presents the smart phone deployed personal IoT architecture for Non-Invasive ECG Capturing. The adaptable IoT medical device cum Gateway is used for personal healthcare with big data storage on cloud configuration. In this approach, the Smartphone camera based imaging technique used to extract the personal ECG waveform and forward it to the cloud based big data storage connectivity using IoT architecture. Elaborated algorithm allows for efficient ECG registration directly from face image captured from Smartphone or Tablet camera. The profound technique may have an exceptional value in monitoring personal healthcare after adequate enhancements are introduced.

Randomness based Static Wear-Leveling for Enhancing Reliability in Large-scale Flash-based Storage (대용량 플래시 저장장치에서 신뢰성 향상을 위한 무작위 기반 정적 마모 평준화 기법)

  • Choi, Kilmo;Kim, Sewoog;Choi, Jongmoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • As flash-based storage systems have been actively employed in large-scale servers and data centers, reliability has become an indispensable element. One promising technique for enhancing reliability is static wear-leveling, which distributes erase operations evenly among blocks so that the lifespan of storage systems can be prolonged. However, increasing the capacity makes the processing overhead of this technique non-trivial, mainly due to searching for blocks whose erase count would be minimum (or maximum) among all blocks. To reduce this overhead, we introduce a new randomized block selection method in static wear-leveling. Specifically, without exhaustive search, it chooses n blocks randomly and selects the maximal/minimal erased blocks among the chosen set. Our experimental results revealed that, when n is 2, the wear-leveling effects can be obtained, while for n beyond 4, the effect is close to that obtained from traditional static wear-leveling. For quantitative evaluation of the processing overhead, the scheme was actually implemented on an FPGA board, and overhead reduction of more than 3 times was observed. This implies that the proposed scheme performs as effectively as the traditional static wear-leveling while reducing overhead.