Recently, as the amount of data increases rapidly, the development of IT technology entered the 'Big Data' era, dealing with large-volume of data at once. In the spatial field, a spatial data service technology is required to use that various and big amount of data. In this study, firstly, we explained the technology of typical spatial information data services abroad, and then we have developed large KML data processing techniques those can be applied as KML format to VWorld desktop. The test was conducted using a large KML data in order to verify the development KML partitioned methods and tools. As a result, the index file and the divided files are produced and it was visible in VWorld desktop.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.284-287
/
2012
GLOVE(GLObal Virtual reality visualization Environment for scientific simulation)는 컴퓨팅 자원의 성능 향상으로 데이터 양이 급속히 증가한 응용 과학과 전산 시뮬레이션 분야의 대용량 과학 데이터를 효율적으로 가시화하여 분석하기 위한 도구이다. GLOVE의 데이터 관리자인 GDM(GLOVE Data Manager)은 대용량 데이터의 분산 병렬 가시화를 위해 분산 공유 메모리를 제공하는 GA(Global Array)를 이용해 테라 바이트 단위의 데이터를 실시간으로 처리한다. 그러나 대용량 과학 데이터를 가시화 하는 과정에서 기존의 Data Locality를 고려하지 않은 데이터 접근 방식으로 인한 성능 저하를 확인했다. 본 논문은 기존 GLOVE에서 발견한 성능 저하 현상을 밝히고, 이에 대한 해결 방법을 제시한다.
The Journal of the Convergence on Culture Technology
/
v.8
no.2
/
pp.361-366
/
2022
There are several ways to process large amounts of data. Depending on the processing method, there is a big difference in processing speed to create a large data list. Typically, to make a large data list, large data is converted into a normalized query, and the result of the query is stored in a List Map and converted into a printable form. This process occurs as a cause of lowering the processing speed step by step. In the process of storing the results of the created query as a List Map, the processing speed differs because the data is stored in a different format for each type of data. Through the simultaneous processing of GO language, we want to solve the problem of the existing difference in processing speed. In other words, it compares the results of GO language concurrency processing by providing how different and how it proceeds between the format contained in the existing List Map and the method of processing using concurrency in large data lists for faster processing. do.
KIPS Transactions on Software and Data Engineering
/
v.8
no.4
/
pp.145-152
/
2019
Unlike a single value from a sensor device, a massive data set has characteristics for various processing aspects; input data may be formed in a different format, the size of input data varies, and the processing time of analyzing input data is not predictable. Therefore, context aware systems may contain complex modules, and these modules can be implemented and used in different ways. In order to solve these problems, we propose a method to handle context information from the result of analyzing massive data. The proposed method considers analysis work as a different type of abstracting context and suggests the way of representing context information. In experiment, we demonstrate how the context processing engine works properly in a couple of steps with healthcare services.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.1113-1115
/
2012
IT 기술이 성장함에 따라 발생되는 데이터의 양이 많아지고 기존의 방식으로 처리하기 힘든 빅 데이터가 이슈가 되고 있으며 이에 따른 대용량 데이터 처리기술 또한 발전하고 있다. 이 논문에서는 실시간 대용량 데이터 처리를 위한 Complex Event Processing을 소개하고 ESPER 엔진 기반의 Complex Event Processing 모델을 설계하고 이에 대한 성능을 평가했다.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.506-507
/
2021
대용량 실험데이터를 생성하는 가속기, 전자현미경, 전파망원경 등과 같은 첨단 실험장비들의 기술적 발전으로, 생성되는 실험데이터의 규모가 폭발적으로 증가하고 있다. 이에 따라, 데이터 분석연구에 대용량 데이터의 저장이 가능하고, 데이터 분석에 필요한 고성능 계산 서버를 갖춘 전문 데이터센터의 활용이 증가하고 있다. 본 논문에서는 이러한 전문 데이터센터를 연계한 데이터 분석 연구환경구축에서 가장 기본이 되는 데이터수집을 위한 고성능 데이터 전송 시스템을 구현하고, 이를 적용한 사례를 통해 제안하는 시스템의 효율성을 검증한다.
Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.63-65
/
2020
과학응용분야의 원활한 협업 지원을 위해서는 원거리간 대용량 연구데이터의 고속 전송이 반드시 요구된다. 이와 관련하여, 본 논문은 기 구축된 대용량 파일 시스템을 다수의 데이터 전송 노드(DTN)에 연동하기 위해 필요한 요구사항들을 정리하고, 이에 기반하여 DTN 클러스터를 설계하고 구축한 사례를 제시한다. 추가적으로, 종단간 왕복지연 시간이 약 130ms에 달하는 원거리 종단 포인트와 대용량 실험데이터를 송수신함으로써 구축된 결과물의 전송 성능을 측정하고 확인한다.
Proceedings of the Korean Society of Computer Information Conference
/
2016.01a
/
pp.305-306
/
2016
현재 스마트 시대에 살고 있는 우리는 매우 복잡하고 거미줄처럼 연결되어 있는 빅 데이터 환경에서 살고 있다. 이런 환경에서는 대용량 데이터를 효율적으로 관리하고 활용하는 것이 개인이나 기업들이 추구하려는 목표이다. 빅 데이터 시대에 데이터의 효율적인 관리와 활용을 위해 다양한 장비에서 수집되고 저장된 대용량 데이터에 대해서 일반적인 데이터 분석을 통한 보안 기술로는 상당한 시간과 자원 낭비가 수반된다. 이를 개선하기 위해 본 논문에서는 하둡을 이용하여 대용량 데이터에 대한 처리 및 분석을 통해 효과적인 보안 시스템을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.2-4
/
2020
최근 데이터 분석을 위한 연구 환경은 고성능 컴퓨팅자원, 대용량 스토리지, 초고속 네트워크 시스템등 IT 기술이 융합된 사이버 인프라 연구 환경을 기반으로 하고 있다. 또한, 실험의 규모가 커지면서 다수의 연구자들이 협업을 통해 공동의 연구결과를 도출하는 집단연구가 증가하고 있다. 본 논문에서는 이러한 환경에서 연구자들이 대용량 실험데이터를 공유·분석할 수 있는 효율적인 스토리지 작업 공간 모델을 제안한다.
According to growth of web, data processing technology is developing. In the Web of next generation, high-speed or high-volume data processing technologies for various wire-wireless users, USN and RFID are developing too. In this paper, we propose a high-volume data processing technology using Complex Event Processing(CEP) engine. CEP is the technology to process complex events. CEP Engine is the following characteristics. First it collects a high-volume event(data). Secondly it analyses events. Finally it lets event connect to new actions. In other words, CEP engine collects, analyses, filters high-volume events. Also it extracts events using pattern-matching for registered events and new events. As the results extracted. We use it by an input event of other work, real-time response for demanded event and can trigger to database for only valid data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.