• 제목/요약/키워드: 대용량 데이터셋

검색결과 55건 처리시간 0.024초

대용량 데이터 스트림을 처리하기 위한 효율적 이진 조인 처리 기법 (Efficient Binary Join Processing for Large Data Streams)

  • 박홍규;이원석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.189-192
    • /
    • 2008
  • 최근에 제한된 데이터 셋보다 센서 데이터 처리, 웹 서버 로그나 전화 기록과 같은 다양한 트랜잭션 로그 분석등과 관련된 대용량 데이터 스트림을 실시간으로 처리하는 것에 많은 관심이 집중되고 있으며, 특히 데이터 스트림의 조인 처리에 대한 관심이 증가하고 있다. 본 논문에서는 조인 연산을 빠르게 처리하기 위한 효율적인 해시 구조와 조인 방법에 대해서 연구하고 다양한 환경에서 제안 방법을 검증한다.

  • PDF

대화 요약 생성을 위한 한국어 방송 대본 데이터셋 (KMSS: Korean Media Script Dataset for Dialogue Summarization )

  • 김봉수;전혜진;전현규;정혜인;장정훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.198-204
    • /
    • 2022
  • 대화 요약은 다중 발화자와 발화문으로 이루어진 멀티턴 형식의 문서에 대해 핵심내용을 추출하거나 생성하는 태스크이다. 대화 요약 모델은 추천, 대화 시스템 등에 콘텐츠, 서비스 기록에 대한 분석을 제공하는 데 유용하다. 하지만 모델 구축에 필요한 한국어 대화 요약 데이터셋에 대한 연구는 부족한 실정이다. 본 논문에서는 생성 기반 대화 요약을 위한 데이터셋을 제안한다. 이를 위해 국내 방송사의 대용량 콘텐츠로 부터 원천 데이터를 수집하고, 주석자가 수작업으로 레이블링 하였다. 구축된 데이터셋 규모는 6개 카테고리에 대해 약 100K이며, 요약문은 단문장, 세문장, 2할문장으로 구분되어 레이블링 되었다. 또한 본 논문에서는 데이터의 특성을 내재화하고 통제할 수 있도록 대화 요약 레이블링 가이드를 제안한다. 이를 기준으로 모델 적합성 검증에 사용될 디코딩 모델 구조를 선정한다. 실험을 통해 구축된 데이터의 몇가지 특성을 조명하고, 후속 연구를 위한 벤치마크 성능을 제시한다. 데이터와 모델은 aihub.or.kr에 배포 되었다.

  • PDF

하둡을 이용한 3D 프린터용 대용량 데이터 처리 응용 개발 (Development of Application to Deal with Large Data Using Hadoop for 3D Printer)

  • 이강은;김성석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권1호
    • /
    • pp.11-16
    • /
    • 2020
  • 3D 프린팅은 주목받는 신기술의 하나로 많은 관심을 받고 있다. 3D 프린팅을 하기 위해서는 먼저 3D 모델을 생성한 후, 이를 프린터가 인식할 수 있는 G-code로 변환하여야 한다. 대개 3D 모델은 페이셋이라고 하는 조그만 삼각형으로 면을 표현하는데, 모델의 크기나 정밀도에 따라 페이셋의 개수가 매우 많아져서 변환에 많은 시간이 걸리게 된다. 아파치 하둡은 대용량 데이터의 분산처리를 지원하는 프레임워크로서 그 활용 범위가 넓어지고 있다. 본 논문에서는 3D 모델을 G-code로 변환하는 작업을 효율적으로 수행하기 위해 하둡을 활용하고자 한다. 이를 위해 2단계의 분산 알고리즘을 개발하였다. 이 알고리즘은 여러 페이셋들을 먼저 Z축 값으로 정렬한 후, N등분하여 여러 노드에서 독립적으로 분산처리하도록 되어 있다. 실제 분산처리는 전처리 - 하둡의 Map - Shuffling - Reduce의 4 단계를 거쳐 구현되었다. 최종적으로 성능 평가를 위해 테스트용 3D 모델의 크기와 정밀도에 따른 처리 시간의 효율성을 보였다.

Low-Resource 환경에서 Multi-Task 학습을 이용한 카자흐어 형태소 분석 (Low-Resource Morphological Analysis for Kazakh using Multi-Task Learning)

  • ;박성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.437-440
    • /
    • 2021
  • 지난 10년 동안 기계학습을 통해 자연어 처리 분야에서 많은 발전이 있었다. Machine translation, question answering과 같은 문제는 사용 가능한 데이터가 많은 언어에서 높은 정확도 성능 결과를 보여준다. 그러나 low-resource 언어에선 동일한 수준의 성능에 도달할 수 없다. 카자흐어는 형태학적 분석을 위해 구축된 대용량 데이터셋이 없으므로 low-resource 환경이다. 카자흐어는 단일 어근으로 수백 개의 단어 형태를 생성할 수 있는 교착어이다. 그래서 카자흐어 문장의 형태학적 분석은 카자흐어 문장의 의미를 이해하는 기본적인 단계이다. 기존에 존재하는 카자흐어 데이터셋은 구체적인 형태학적 분석의 부재로 모델이 충분한 학습이 이루어지지 못하기 때문에 본 논문에서 새로운 데이터셋을 제안한다. 본 논문은 low-resource 환경에서 높은 정확도를 달성할 수 있는 신경망 모델 기반의 카자흐어 형태학 분석기를 제안한다.

그룹특징기반 슬라이딩 윈도우 클러스터링에서의 k-means와 k-medoids 비교 평가 (Comparison between k-means and k-medoids Algorithms for a Group-Feature based Sliding Window Clustering)

  • 양주연;심준호
    • 한국전자거래학회지
    • /
    • 제23권3호
    • /
    • pp.225-237
    • /
    • 2018
  • 대용량 데이터의 발생과 처리가 대중화되면서 대용량 데이터 스트림 처리에 대한 수요가 급격하게 증가하고 있다. 이 수요에 따라 다양한 대용량 데이터 처리 기술이 개발되고 있다. 한 분야로 주목받고 있는 방식은 슬라이딩 윈도우를 사용한 데이터 스트림 클러스터링이다. 슬라이딩 윈도우를 사용한 데이터 스트림 클러스터링은 윈도우가 이동할 때마다 새로운 클러스터를 생성한다. 기존의 슬라이딩 윈도우 상의 클러스터링 기법은 코어셋(Coreset)을 기반으로 데이터 스트림 클러스터링을 구현하고 있다. 이 연구에서는 코어셋을 활용한 그룹특징을 이용한 알고리즘 내에서 이용하는 클러스터링 알고리즘을 변경하였다. 그리고 이를 통해 제안 알고리즘과 기존 알고리즘의 파라미터 값 변화에 따른 성능 비교 실험을 진행하였다. 개선된 사항에 대해 논하여 두 알고리즘을 비교하고 실험자에게 파라미터에 따른 이용 방향을 제시한다.

대용량 데이터 처리를 위한 고속 분산 인메모리 플랫폼 기반 재귀적 질의 알고리즘들의 구현 및 비교분석 (A Comparative Analysis of Recursive Query Algorithm Implementations based on High Performance Distributed In-Memory Big Data Processing Platforms)

  • 강민서;김재성;이재길
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.621-626
    • /
    • 2016
  • 재귀적 질의 알고리즘은 소셜네트워크 서비스의 도달가능 질의와 같은 많은 응용프로그램에 사용된다. 하지만 최근에 소셜네트워크 서비스의 규모가 커짐에 따라 그래프 데이터의 크기 또한 커지고 있다. 따라서 재귀적 질의 알고리즘을 싱글 머신에서 가동하는 것이 거의 불가능해졌다. 본 논문에서는 이러한 문제점을 해결하기 위해서 고속 분산 인메모리 플랫폼인 스파크와 트위스터에서 재귀적 질의 알고리즘을 구현하였다. 구현된 알고리즘은 아마존 EC2 머신 50대에서 Real-world 데이터 셋인 LiveJournal과 ClueWeb으로 실험하였다. 실험결과 상대적으로 노드 수는 적고 평균 차수(degree)는 높은 LiveJournal 데이터 셋에서는 스파크에서 구현된 재귀적 알고리즘의 성능이 트위스터의 것보다 좋았다. 그리고 상대적으로 노드 수는 많고 평균 차수는 낮은 ClueWeb 데이터 셋에서는 트위스터에서 구현된 재귀적 알고리즘의 성능이 스파크의 것보다 좋았다.

요점만 남긴 신문 기사: 한국어 표제 형식 문서 요약 데이터셋 (News in a Nutshell: A Korean Headline-Style Summarization Dataset)

  • 권홍석;고병현;박주홍;이명지;오재영;허담;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.47-53
    • /
    • 2020
  • 문서 요약은 주어진 문서에서 핵심 내용만을 남긴 간결한 요약문을 생성하는 일로 자연어처리의 주요 분야 중 하나이다. 최근 방대한 데이터로부터 심층 신경망 표상을 학습하는 기술의 발전으로 문서 요약 기술이 급진적으로 진화했다. 이러한 데이터 기반 접근 방식에는 모델의 학습을 위한 양질의 데이터가 필요하다. 그러나 한국어와 같이 잘 알려지지 않은 언어에 대해서는 데이터의 획득이 쉽지 않고, 이를 구축하는 것은 많은 시간과 비용을 필요로 한다. 본 논문에서는 한국어 문서 요약을 위한 대용량 데이터셋을 소개한다. 데이터셋은 206,822개의 기사-요약 쌍으로 구성되며, 요약은 표제 형식의 여러 문장으로 되어 있다. 우리는 구축한 학습 데이터의 적합성을 검증하기 위해 수동 평가 및 여러 주요 속성에 대해 분석하고, 기존 여러 문서 요약 시스템에 학습 및 평가하여 향후 문서 요약 벤치마크 데이터셋으로써 기준선을 제시한다. 데이터셋은 https://github.com/hong8e/KHS.git의 스크립트를 통해 내려받을 수 있다.

  • PDF

회화문화재 객체검출을 위한 학습용 이미지 데이터셋 구축 방안 연구 (A Study on the Construction of Image Datasets for Object Detection of Painting Cultural Heritage)

  • 권도형;유정민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.853-855
    • /
    • 2021
  • 본 연구는 회화문화재 속에 표현된 다양한 종류의 객체를 검출할 수 있는 딥러닝 모델생성을 위해 필요한 학습용 이미지 데이터셋 구축방안을 제안한다. 먼저 기존 동양화 기반의 회화문화재 이미지 데이터 및 객체 특징 분석을 진행하였고, 이를 바탕으로 Natural image에 Pose transfer 및 Style transfer를 적용한 새로운 방식의 회화문화재 이미지 데이터 생성 방법을 제안한다. 제안한 프레임워크를 통해 기존 문화재 분야에서 가지고 있던 제한된 데이터 구축문제를 극복하고, 검출모델 생성을 위한 대용량의 학습데이터 구축 가능성을 제시하였다.

MongoDB를 활용한 Jena 프레임워크 기반의 분산 트리플 저장소 구현 (An implementation of MongoDB based Distributed Triple Store on Jena Framework)

  • 안진현;양성권;이문환;정진욱;김응희;임동혁;김홍기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1615-1617
    • /
    • 2015
  • 웹을 통한 데이터 공유에 대한 관심의 증가로 RDF 트리플 형태의 데이터가 폭발적으로 증가하고 있다. 대용량 RDF 데이터를 저장하고 빠른 SPARQL 질의 처리를 지원하는 트리플 저장소의 개발이 중요하다. 아파치 프로젝트 중 하나인 Jena-TDB는 가장 잘 알려진 오픈소스 트리플 저장소 중 하나로서 Jena 프레임워크 기반으로 구현됐다. 하지만 Jena-TDB 의 경우 단일 컴퓨터에서 작동하기 때문에 대용량 RDF 데이터를 다룰 수 없다는 문제점이 있다. 본 논문에서는 MongoDB를 활용한 Jena 프레임워크 기반의 트리플 저장소인 Jena-MongoDB를 제안한다. Jena 프레임워크를 사용했기 때문에 기존 Jena-TDB와 동일한 인터페이스로 사용할 수 있고 최신 표준 SPARQL 문법도 지원한다. 또한 MongoDB를 사용했기 때문에 분산환경에서도 작동할 수 있다. 대용량 LUBM 데이터셋에 대한 SPARQL 질의 처리 실험결과 Jena-MongoDB가 Jena-TDB 보다 빠른 질의 응답 속도를 보여줬다.

데이터 시각화 기반의 UCI Sensor Data 분석 (UCI Sensor Data Analysis based on Data Visualization)

  • 장일식;최희조;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.21-24
    • /
    • 2020
  • 대용량의 데이터를 시각적 요소를 활용하여 눈으로 볼 수 있도록 하는 데이터 시각화에 대한 관심이 꾸준히 증가하고 있다. 데이터 시각화는 데이터의 전처리를 거쳐 차원 축소를 하여 데이터의 분포를 시각적으로 확인할 수 있다. 공개된 데이터 셋은 캐글(kaggle), 아마존 AWS 데이터셋(Amazon AWS datasets), UC 얼바인 머신러닝 저장소(UC irvine machine learning repository)등 다양하다. 본 논문에서는 UCI의 화학 가스의 데이터셋을 이용하여 딥러닝을 이용하여 다양한 환경 및 조건에서의 학습을 통한 데이터분석 및 학습 결과가 좋을 경우와 그렇지 않을 경우의 마지막 레이어의 특징 벡터를 시각화하여 직관적인 결과를 확인 가능 하도록 하였다. 또한 다차원 입력 데이터를 시각화 함으로써 시각화 된 결과가 딥러닝의 학습결과와 연관이 있는지를 확인 한다.

  • PDF