• Title/Summary/Keyword: 대심도

Search Result 241, Processing Time 0.027 seconds

Determination Method of Suitable Mud Density While Drilling through Confined Aquifer and Its Application (피압대수층을 통과하는 대심도 시추 중 적정이수밀도 결정 방법 및 적용 사례)

  • Woon Sang Yoon;Yoosung Kim;Hyeongjin Jeon;Yoonho Song;Changhyun Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • During deep drilling, confined aquifers can present various challenges such as the inability to remove cuttings, rapid groundwater influx, and mud loss. Particularly in flowing well conditions, it is essential to apply the suitable mud density since the aquifer can generates an overpressurized condition. This paper proposes a method for determining the suitable mud density while drilling (SMD) through confined aquifers using mud window analysis and applies it to a case study. The minimum mud density at each depth, which represents the lower limit of the mud window, is determined by the equivalent mud density pore pressure gradient (or by adding a trip margin) at that depth. The pore pressure gradient of a confined aquifer can be calculated using the piezometric level or well head pressure of the aquifer. As the borehole reaches the confined aquifer, there is a significant increase in pore pressure gradient, which gradually decreases with increasing depth. The SMD to prevent a kick can be determined as the maximum value among the minimum mud densities in the open hole section. After entering the confined aquifer, SMD is maintained as the minimum mud density at the top of the aquifer during the drilling of the open hole section. Additionally, appropriate casing installation can reduce the SMD, minimizing the risk of mud loss or invasion into the highly permeable aquifer.

A Consideration on the Stability Analysis Method of Great Deep Tunnels (대심도 터널의 안정성 해석 방법에 대한 고찰)

  • 김주봉;안경철;김영준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.301-308
    • /
    • 1999
  • The construction of great deep tunnels has become an important part in tunnel construction especially in the mountain area. Therefore, it is necessary to establish the proper method of the stability analysis for great deep tunnels. In this paper presents the study result on the followings: (1) Evaluation of practical problem on the stability analysis of great deep tunnels. (2) Proposal of the proper on method for great deep tunnels analysis considering the depth of overburden. (3) Understanding of the ground behavior of the great deep tunnel through the sensitivity analysis and the parametric study.

  • PDF

Monitoring management for safely construction of deep shield tunnel (대심도 해저 쉴드터널 안전시공을 위한 계측관리)

  • 유길환;김영수;황대영;곽정민;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.319-326
    • /
    • 2002
  • During the construction period of submarine shield tunnel, which is built firstly in very soft marine clay layer 40m deep in Korea, wide range problems were encountered such as safe launching against high earth pressure at shield entrance, technique of shield face pressure control when passing through complex multi-layered soils This paper introduces successful construction practice through development of state-of-the-art construction method and field monitoring.

  • PDF

Discharge Capacity of PBD and Deep Soft Soil Improvement (PBD의 배수특성과 대심도 지반개량)

  • 구본효
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.585-592
    • /
    • 2002
  • Discharge capacity of PBD is the most important factor of specification items to control any product of PBD. There is no standard specification for the PBD. Because the degree of discharge capacity is related to well resistance, install depth, maximum strain etc in the field. Discharge capacity test of PBD, permeability test of filter are conducted using PBD materials used in Korea. This paper proposes the critical discharge capacity for deep PBD under condition of non well resistance based upon their test and theoretical calculation. It was found that discharge capacity more than about 10 ㎤/sec is enough to undergo designing of deep PBD without well resistance.

  • PDF

Preliminary Study on Settlement Prediction of Thick Soft Clay Deposits (대심도 연약지반에 적용가능한 침하예측기법 개발을 위한 기초적 연구)

  • 정하익;진현식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.725-730
    • /
    • 2002
  • The areas around the Nam-Hae are mostly covered in thick soft clay deposits(50∼60.0m). In order to improve the ground in these areas verticals trains have been partially penetrated up to the depth of about 25.0m. However, since the predicted values of settlement have often been changed at some predicted time. Finite element analysis was performed to investigate the consolidation behaviour for it. The results from FEM was compared with various observational methods.

  • PDF

도심지 대심도 장대지하차도의 방재 대책

  • Kim, Nam-Yeong;Jo, Jong-Bok;Kim, Jae-Wan
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.40 no.4
    • /
    • pp.4-10
    • /
    • 2011
  • 자동차의 대중화와 인구집중화로 인하여 대도시의 경우 지하공간에 도로를 설치하려는 계획이 많아지고 있다. 그 계획에 대하여 장점을 찬성하는 사람들도 있지만 안전에 관하여 많은 사람들이 우려를 하고 있다. 그러므로 장대지하차도의 국내외 사례를 확인하고 재해에 대한 방재대책에 관하여 살펴보고자 한다.

  • PDF

A Study on Consolidation Analysis Solution in Deep Soft Ground Improved by Plastic Board Drain Method (PBD공법이 적용된 대심도 연약지반에 대한 압밀분석해에 관한 연구)

  • Park, Jung-Sub;Kim, Byung-Hong;Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.49-55
    • /
    • 2007
  • It is very important to determine the consolidation rate of ground, depending on the progress of time in applying this vertical drain method. Various consolidation analysis solutions capable of forecasting the consolidation rate are being proposed at the moment. However, the degree of consolidation measured from site, has a considerable different from the degree of consolidation which was obtained by the analysis of vertical drain consolidation. This study aims at assessing the applicability and verfication of each consolidation analysis solution by comparing and analyzing the degree of consolidation measured in the field and the degree of consolidation based on the theoretical equation for the analysis of the consolidation of Hansbo, Onoue, Zeng and Xie used as the consolidation analysis solution before the beginning of construction, on the basis of monitored field results and site investigation data as to the deep soft ground in Busan area applied by PBD method.

  • PDF

Monitoring Result of Rock Mass Behavior during Excavation of Deep Cavern (대심도 지하 공간 굴착시의 암반거동 - 일본 SUPER KAMIOKANDE의 사례 -)

  • Lee Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.11-25
    • /
    • 2006
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000 meters, in the Kamio Mine, Japan. The excavated cavern is consisted of a cylinder of 42.4 m high and a semi elliptical dome of 15.2 m high, with a bottom diameter of 40 m. The total excavation volume is approximately $69,000\;m^3$. Because of the character as a large cavern excavation in deep underground, there is many unknown factors in rock mechanics. Based on the results of rock test and numerical analysis, the monitoring of rock mass behavior accompanying progress of construction was performed by various instruments installed in the rock mass surrounding the cavern. The monitoring data was used in the study of measures for cavern stability.

Effect of orientation of fracture zone on tunnel behavior - Numerical Investigation (파쇄대의 공간적 분포가 터널 거동에 미치는 영향 - 수치해석 연구)

  • Yoo, Chung-Sik;Cho, Yoon-Gyu;Park, Jung-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.253-270
    • /
    • 2013
  • This paper concerns the effect of orientation and geometric characteristics of a fracture zone on the tunnel behavior using a numerical investigation. A parametric study was executed on a number of drill and blast tunnelling cases representing different fracture and tunnelling conditions using two and three dimensional finite element analyses. The variables considered include the strike and dip angle of fracture zone relative to the longitudinal tunnel axis, the width and the clearance of the fracture zone, the tunnel depth, and the initial lateral stress coefficient. The results of the analyses were examined in terms of the tunnel deformation including crown settlement, convergence, and invert heave as well as shotcrete lining stresses. The results indicate that the tunnel deformation as well as the shotcrete lining stress are strongly influenced by the orientation of the fracture zone, and that such a trend becomes more pronounced for tunnels with greater depths.

Load Transfer Characteristics and Ultimate Bearing Capacity of PHC Pile in Deep Soft Clay Layer (대심도 연약지반에 근입된 PHC말뚝기초의 하중전이특성 및 극한지지력 산정)

  • Lee, Yonghwa;Kim, Myunghak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In this study, the analysis of load transition of PHC pile was performed with the static load test, which was driven in deep soft clay layer of MyungJi site in the western area of Pusan. The results of test showed that the range of unit side resistance of pile in sand layer were $7.4t/m^2$ to $23.3t/m^2$ and $6.4t/m^2$ in the soft clay layer, while the unit base resistance was $955t/m^2$ in dense silty sand layer. To select the most reasonable static bearing capacity formular, the field measured values are compared with the calculated ones from the suggested various formular. In the case of side resistance in sand layer, the suggest formular in the Structural Foundation Design Manual by KGS was most reasonable, while in clay layer Railroad Design Manual.

  • PDF