• Title/Summary/Keyword: 대류방정식

Search Result 136, Processing Time 0.023 seconds

Analysis of Flood Flow Characteristics of the Han River using 1-Dimensional St. Venant Equations (1차원 St. Venant 방정식을 이용한 한강 하류부 하도의 홍수류 특성 분석)

  • Kim, Won;Woo, Hyo-Seop;Kim, Yang-Su
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.163-179
    • /
    • 1996
  • Flood flow characteristics of the Han River (from Goan to Indo Bridge) are analyzed using 1-dimensional St. Venant equations. NETWORK, a finite difference model, is used to calculate each term (local acceleration term, convective acceleration term, pressure force term, gravity force term, and friction force term) of the momentum equation and to analyze the flow characteristics. By the result of the study, as the general characteristics of flow in a channel that acceleration terms are very small and the other three terms are much greater is presented, three terms(pressure force term, gravity force term, friction force term) are to be main terms which decide the characteristics of flow. Specially in this region the acceleration term is noted so large that it cannot be ignored according to the shape of hydrograph and the region.

  • PDF

Long-term Variations of Troposphere-Stratosphere Mean Meridional Circulation (대류권-성층권 평균자오면순환의 장기변동)

  • Seol, Dong-Il
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • Studies of atmospheric general circulation in the troposphere and stratosphere are very important to understand the influence of human activities on the global climate and its change. Recently, the existence of an annual cycle in the circulation has been reported by a number of studies. In this study, the residual mean meridional circulation is calculated by the TEM momentum and continuity equations for the period from December 1985 to November 1995 (10 years), and the long-term variations of the circulation and mass fluxes across the 100hPa surface are examined. The multiple regression statistical model is used to obtain quantitatively the long-term variations. This study is focused especially on mean meridional circulation in the troposphere and stratosphere associated with ENSO (El Ni${\tilde{n}}$o-Southern Oscillation) which is known as a cause of the unusual weather, global climate, and its change. The results show that the global scale troposphere-stratosphere mean meridional circulation is intensified during El Ni${\tilde{n}}$o event and QBO (quasi-biennal oscillation) easterly phase and weakened during La Ni${\tilde{n}}$o event and QBO westerly phase. The signal of Mount Pinatubo volcanic eruption in June 1991 is obtained. Due to the volcanic eruption the global scale troposphere-stratosphere mean meridional circulation is abruptly intensified.

  • PDF

Numerical Analysis of Combined Natural and Forced Convection Around Cylinders (II) (실린더로부터 전달되는 혼합대류 열전달의 수치해석 (II))

  • Moon, S.H.;Shih, T.M.;Johnson, A.T.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.22-30
    • /
    • 1987
  • 실린더로부터 Prandtl수가 0.7인 주변공기로 전달되는 혼합대류 열전달현상을 Stream-Vorticity 함수로 표시된 재배방정식으로부터 유한차분법으로 분석하였다. Nusselt수와 실린더 주변의 온도분포가 조사된 제1편에 이어 Reynolds수와 Gradhof수가 실린더 주변의 공기속도분포, 경계층 박리지점(Separation point), 실린더 표면에서의 마찰계수 및 실린더 주변에서의 압력분포에 미치는 영향을 분석하였다.

  • PDF

A Numerical Model for Cohesive Suspended Load Movement (점착성 부유사 이동에 관한 수치모형)

  • 안수한;이상화
    • Water for future
    • /
    • v.23 no.1
    • /
    • pp.119-127
    • /
    • 1990
  • The concentration of cohesive suspended sediment is determined by the circulation of water and the material dispersion. The equations of the two-dimensional, depth-integrated dispersive transport are the Reynolds equation, continuity equation, and advection-dispersion equation based on the Fick's law. A finite difference method has been applied to two models of circulation and dispersion transport. The circulation model is solved by the explicit scheme and the dispersion transport model is solved by multi-operational scheme. It is investigated wheter advective terms are included when the equation of circulation is applied to the model. For advection-dispersion equation, it was also investigated about variations of suspended sediment concentration with respect to the critical shear stresses.

  • PDF

Numerical Analysis of Natural Convection in Room Fire (화재실내 자연대류의 수치해석)

  • Jung Gil-Soon;Lee Seung-Man;Lee Byung-Kon
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.18-25
    • /
    • 2005
  • In this study, numerical analysis of two-dimensional unsteady natural convection of air in a square enclosure heated from below, was performed as a basic research of fire science. SIMPLE algorithm was used to the pressure term of momentum equations in the numerical analysis. The numerical analysis were studied for the two model cases and two heat conditions, respectively, which are different with insulation of enclosures and position of heat applied. Also, the ceiling temperatures of enclosure were measured to compare the accuracy of numerical analysis, and it is found that the temperature predicted by numerical analysis were agreed well with the measurements. Streamline and isotherm of the each model case were acquired for each time step.

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

A Conservative USCIP Simulation Method for Shallow Water (물 표면 시뮬레이션을 위한 보존적 USCIP법)

  • Jeon, Sejong;Song, Oh-young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • We propose a physical simulation method based on the shallow water equation(SWE) to represent water surface effectively. In this paper, the water which can be represented has a much larger width compared to the depth does not have a large vertical direction flow. In order to calculate the water flow efficiently, we start with the shallow water equation as the governing equation, which is a simplified version of the Navier-Stokes equation. In order to numerically calculate the advection term of the SWE, we introduce a new conservtive USCIP(CUSCIP) method which improves the Constrained Interpolation Profile (CIP) method to preserve the physical quantity while increasing the numerical accuracy. The proposed method is based on Kim et. al.'s Unsplit Semi-lagrangian CIP[9], and calculates advection term with additional constraints on term that consider integral values. The experimental results show that the CUSCIP method is robust to the loss of physical quantity due to numerical dissipation, which improves wave detail and persistence.

An Advection Scheme for the Transport of Fractional Volume of an Incompressible Fluid (비압축성 유체의 체적비 수송에 대한 대류항 계산 기법)

  • Kwak Ho Sang;Kuwahara Kunio
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • 서로 섞이지 않는 두 비압축성 유체의 유동을 해석하기 위하여 VOF 방법에 기초한 수치 기법을 개발하였다. 유체간의 계면형상의 거동은 유동장내의 유체의 점유체적비의 변화에 의해 묘사되는데 이를 지배하는 이동방정식을 풀기 위한 새로운 대류항 계산법을 고안하였다. 대류항은 유체계면의 방향에 따라 풍상법과 역풍상법의 적절한 조합을 취하여 계산하는데 여기에 대각방향의 상류효과를 포함시켜 시간에 대한 2차 정확도를 갖도록 하였다. 또한 이 방법을 유량보정수송(FCT)법과 결합시켜 해의 단조성을 보장하였다. 몇 가지 단순 문제에 대한 시험 결과 이 기법이 수치오차에 의한 계면형상의 변형과 파손을 감소시킴을 확인하였다.

  • PDF

Thermophoresis of highly absorbing, emitting particles suspended in a mixed convection flow system (혼합 대류 유동시스템에 부유된 고흡수 방사하는 입자의 열 확산)

  • Yoa, S. J.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.115-125
    • /
    • 1992
  • 혼합 대류 이상 유동 시스템에 부유된 슈트와 미분탄과 같은 고흡수, 방사하는 입자의 열확산적 입자이동에 대한 복사 및 부력효과를 수치적으로 검토하였다. 기체 및 입자유동의 지배방정식 들은 Euler 관점의 two-fluid model의 근간에서 수행되었으며, 에너지 보존식의 비선형 복사 생 성항은 P-1 근사방법에 의해 계산되었다. 혼합 대류 유동에서의 입자의 열확산 현상은 복사 열 전달과 커플링되며, 복사효과의 증가는 부력효과를 상대적으로 감소시켜 부력효과에 의한 입자 부착율을 완화시켰다. 복사효과가 무시될 때 Grashof 수의 증가에 따라 입자의 확산효과는 감 소되었으며, 복사효과가 함께 작용될 때 입자 부착율은 증가됨을 보였다.

  • PDF