• Title/Summary/Keyword: 대기율

Search Result 852, Processing Time 0.031 seconds

An Adaptive Synchronization by Analyzing the Delay Time of Media (미디어 지연시간 분석에 의한 가변적 동기화)

  • Seo, Yeong-Geon;O, Hae-Seok;Sim, Jong-Chae;Kim, Ho-Yong;Kim, Hyeon-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2801-2811
    • /
    • 1997
  • This thesis Proposes a media synchronization mechanism for video conferencing system by analyzing a variation of the delay time of media. Using this mechanism, this thesis analyzes the media traffics and determines the values of external variables important on waiting time. This system uses some dummy streams to get the time. When two hosts are initially connected, they change the dummy streams by which a logical time of the sender may be extracted. The time presenting a media stream is a sum of base time, logical time and the waiting time. At this time, for the purpose of optimally adjusting the waiting time, this mechanism uses the rate of updating the waiting time and the sampling unit of media. These values are acquired by analyzing the waiting times, the delay rates and the delayed arrival times.

  • PDF

A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery (드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석)

  • Jeon, Eui-ik;Kim, Kyeongwoo;Cho, Seongbeen;Kim, Shunghak
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.203-215
    • /
    • 2019
  • As hyperspectral sensors that can be mounted on drones are developed, it is possible to acquire hyperspectral imagery with high spatial and spectral resolution. Although the importance of atmospheric correction has been reduced since imagery of drones were acquired at a low altitude,studies on the conversion process from raw data to spectral reflectance should be done for studies such as estimating the concentration of surface materials using hyperspectral imagery. In this study, a vicarious radiometric calibration and an atmospheric correction algorithm based on atmospheric radiation transfer model were applied to hyperspectral data of drone and the results were compared and analyzed. The vicarious calibration method was applied to an empirical line calibration using the spectral reflectance of a tarp made of uniform material. The atmospheric correction algorithm used ATCOR-4 based Modran-5 that was widely used for the atmospheric correction of aerial hyperspectral imagery. As a result of analyzing the RMSE of the difference between the reference reflectance and the correction, the vicarious calibration using the tarp in a single period of hyperspectral image was the most accurate, but the atmospheric correction was possible according to the application purpose of using hyperspectral imagery. If the correction process of normalized spectral reflectance is carried out through the additional vicarious calibration for imagery from multiple periods in the future, accurate analysis using hyperspectral drone imagery will be possible.

Numerical Simulation of Dispersion of Air Pollutants from Combined Cycle Power Plants (복합화력발전소 대기오염영향 평가)

  • Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.529-539
    • /
    • 2016
  • Modeling can be used to understand the atmospheric dispersion of air pollutants scientifically. Recent development of model computation enabled to simulate more diverse area. As flowing out from the emission source, the concentration profiles of air pollutants could be estimated in three dimensional space. This study used CALPUFF diffusion model to predict the diffusion of discharged NO2 and TSP on the atmosphere near a combined heat power plant and incinerator. It was investigated contribution concentration of the surrounding area by sources by comparing the actual measurement results and the results of the modeling. Contribution of emission sources to the local level of NO2 was found quite high particularly at the site, A-3. The estimated results by modelling revealed more significant effect on TSP at A-5.

The Impact of Interaction between Cloud and Longwave Radiation on the Asian Monsoon Circulation (구름-장파복사 상호작용이 아시아 몬순에 미치는 영향)

  • Ryu, Geun-Hyeok;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Three-dimensional distributions of longwave radiation flux for the April-September 1998 period are generated from radiative transfer calculations using the GEWEX Asian Monsoon Experiment (GAME) reanalysis temperature and humidity profiles and International Satellite Cloud Climatology Project (ISCCP) cloudiness as inputs to understand the effect of cloud radiative forcing in the monsoon season. By subtracting the heating of the clear atmosphere from the cloudy radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the Asian monsoon. Cloud-induced heating exhibits its maximum heating areas within the Indian Ocean and minimum heating over the Tibetan Plateau, which establishes the north-south oriented differential heating gradient. Considering that the differential heating is a ultimate source generating the atmospheric circulation, the cloud-induced heating gradient established between the Indian Ocean and the Plateau can enhance the strength of the north-south Hadley-type monsoon circulation. Cooling at cloud top and warming at cloud bottom, which are the vertical distributions of cloud-induced heating, can exert on the monsoon circulation by altering the atmospheric stability.

Power Charge Scheduling and Charge-Ready Battery Allocation Algorithms for Real-Time Drones Services (실시간 드론 서비스를 위한 전원 충전 스케쥴링과 충전 배터리 할당 알고리즘)

  • Tajrian, Mehedi;Kim, Jai-Hoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.12
    • /
    • pp.277-286
    • /
    • 2019
  • The Unmanned Aerial Vehicle (UAV) is one of the most precious inventions of Internet of things (IOT). UAV faces the necessity to charge battery or replace battery from the charging stations during or between services. We propose scheduling algorithms for drone power charging (SADPC). The basic idea of algorithm is considering both a deadline (for increasing deadline miss ratio) and a charging time (for decreasing waiting time) to decide priority on charging station among drones. Our simulation results show that our power charging algorithm for drones are efficient in terms of the deadline miss ratio as well as the waiting time in general in compare to other conventional algorithms (EDF or SJF). Also, we can choose proper algorithms for battery charge scheduling and charge ready battery allocation according to system parameters and user requirements based on our simulation.

Application of Atmospheric Correction to KOMPSAT for Agriculture Monitoring (농경지 관측을 위한 KOMPSAT 대기보정 적용 및 평가)

  • Ahn, Ho-yong;Ryu, Jae-Hyun;Na, Sang-il;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1951-1963
    • /
    • 2021
  • Remote sensing data using earth observation satellites in agricultural environment monitoring has many advantages over other methods in terms of time, space, and efficiency. Since the sensor mounted on the satellite measures the energy that sunlight is reflected back to the ground, noise is generated in the process of being scattered, absorbed, and reflected by the Earth's atmosphere. Therefore, in order to accurately measure the energy reflected on the ground (radiance), atmospheric correction, which must remove noise caused by the effect of the atmosphere, should be preceded. In this study, atmospheric correction sensitivity analysis, inter-satellite cross-analysis, and comparative analysis with ground observation data were performed to evaluate the application of KOMPSAT-3 satellite's atmospheric correction for agricultural application. As a result, in all cases, the surface reflectance after atmospheric correction showed a higher mutual agreement than the TOA reflectance before atmospheric correction, and it is possible to produce the time series vegetation index of the same standard. However, additional research is needed for quantitative analysis of the sensitivity of atmospheric input parameters and the tilt angle.

Analysis of an Altitude Detection Accuracy by a Weather Effect for Long Range and Multi Function Radar (장거리 다기능 레이더에서 기상에 의한 고도 탐지 정확도 영향 분석 연구)

  • Kwon, Sewoong;Lee, Jong-Hyun;Kwon, Yangwon;Lee, Kiwon;Kim, Han Seng;Sun, Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.123-129
    • /
    • 2014
  • This paper presents an altitude detection accuracy for long range and multifunction radar. The accuracy is difficult to estimate because it is affected by an time varying atmosphere refractivity. We analyze altitude accuracy with a raytracing simulator with atmosphere refractivity. An altitude error is simulated with measured and modeled refractivity, and the modeled refractivity is used for compensate an altitude accuracy. As a result, the error is modeled with normal distribution function, and analyzed.