• Title/Summary/Keyword: 달성 가능한 선량

Search Result 7, Processing Time 0.022 seconds

Measurement of Tumor Dose Using Optically Stimulated Luminescence Detectors (OSLDs) and Ionization Chambers for Primary and Metastatic Lymph Node Cancers with Head and Neck: Comparison of Beam Spoiler and Bolus (광자극발광선량계와 이온함을 이용한 두경부 원발종양 및 림프절 전이성 종양의 선량 측정: 산란판과 볼루스의 비교)

  • Lee, Jeong-Ok;Lee, Jae-Seung;Jeong, Dong-Hyeok
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.160-167
    • /
    • 2011
  • This study conducts cross-comparison through verification of treatment planning of using beam spoiler and bolus, according to the dose variation of different tumor bed and metastatic lymph node cancers, against ionization and optically stimulated luminescence detectors(OSLDs), in head and neck radiotherapy. Verification of treatment planning examined the feasibility of inserting detectors through simulated solid dry water slabs under identical irradiated conditions from treatment planning system to measure beam spoiler and 0.5, 1 cm bolus. In addition, two detectors were cross-compared for verification of treatment planning accuracy and reliability within ${\pm}$2%. The study found that, given a beam spoiler thickness of 0.5 cm and beam spoiler-to-skin distance of 10 cm subjected to optimal dose distribution given for metastatic lymph node cancers, the bolus low-level skin dose was less, and the tumor bed dose reduced slightly. Additionally, two detectors were cross-compared for accuracy within ${\pm}$1%. Accordingly, The use of beam spoiler was determined that reduces skin side effects and can deliver an optimal dose distribution for tumor, and to apply to future clinical studies should be performed.

Changes in External Radiation Dose Rate for PET-CT Test Patients (PET-CT 검사 환자의 외부 방사선량률 변화)

  • Kim, Su-Jin;Han, Eun-Ok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.103-107
    • /
    • 2012
  • This paper analyzes changes in the external radiation dose rate of PET-CT test patients as a part of providing basic materials for reduction of radiation exposure to PET-CT test patients. In theory the measurement of external radiation dose rate of PET-CT test patients shows that the further the distance from the patient injected with radioactive pharmaceutical and a longer time elapsement from the injection leads to a smaller amount of radiation. Particularly, the amount of radiation marked the highest in the chest was at 4.17 minutes immediately after the intravenous injection and in the head after 77.47 minutes after urination in advance to the PET-CT test. As in the generalized information, it is desired to keep distance between the patient and caretakers or professionals to reduce the amount of radiation exposure from PET-CT test patients and to resume contact the patient after the time when the radiation has reduced. If contact is unavoidable, it is desired to keep at least 200cm from the patient. In addition, the amount of radiation reached the highest in the chest at first and then in the head from 77 minutes after injection. Accordingly, it would be helpful in achieving the optimization if contact is made based on the patient's physical characteristics. This study is significant as it measures changes in radiation the dose rate by; distance from the PET-CT test patient, time elapsed, and specific parts of body. Further studies based on the findings in this paper are required to analyze changes in radiation dose rate in accordance with individual characteristics unique to PET-CT patients and to utilize the results to reduce the amount of radiation patient, caretakers and professions are exposed.

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

The Research Relating to QA of the Absorbed Dose in the 10 MeV E-beam Facility in Accordance with the International Standards (국제표준에 따른 10 MeV급 전자빔 조사시설의 흡수선량 품질보증에 관한 연구)

  • Ha, Tae-Sung;Ahn, Cheol;Jung, Pyeong-Hwan;Cho, Jeong-Hee;Lee, Jong-Seok;Lee, Hye-Nam;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • In the field of healthcare, the conventional sterilization treatments have been replaced by irradiation methods which are in accordance with internationally well established quality standards. The quality control in radiation sterilization assures that the absorbed dose of the irradiated material is in agreement with its requirements and standards. The electron beam irradiation requires technical assessments of more process parameters than gamma irradiation does. Korea has witnessed wide uses of electron accelerators since early 2000 but there hasn't been research experiences relating to quality system in accordance with international standards. The new large scale e-beam irradiation system with the specification of 10 MeV, 8 kW was installed and operated in 2008 by Seoul Radiology Services Co. It consists of the electron accelerator, product handling system, safety, documentation and control subsystems into an integrated system to meet the requirement of the Good Manufacturing Practice such as process quality assurance and management of product tracking records. To implement the international standard such as EN ISO11137, it is necessary to understand the purposes aimed in the standard and carry out the tests following the procedures required. This study presented the specification of the e-beam facility and showed what its design requirements and features are. The test results on a variety of process parameters were presented and validated it they are within the required limits.

A Study of Diagnostic Reference Levels for Coronary Angiography and Percutaneous Coronary Intervention in Gyeongsang Area (관상동맥 조영술 및 경피적 관상동맥 중재술에 대한 진단참고준위에 관한 연구; 경상도지역중심)

  • Si-Wang Lim;Jung-Su Kim;Pyong-Kon Cho
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.123-129
    • /
    • 2023
  • Interventional cardiology procedures can involve relatively high radiation doses compared to conventional radiography. During CAG, CAG + PCI and PCI the same area is exposed to radiation for a long period. In this study, radiation exposure data of 421 examinations in Gyeongsang area were collected, and the DRLs and ADs in actual medical practice for three types of interventional cardiology procedures in Korea were established. In CAG 286 case, 75th percentile DRLs and ADs of the total DAP were 55.89 Gy·cm2 and 37.47 Gy·cm2 , respectively. In CAG + PCI 92 case, those values were 222.84 Gy·cm2 and 117.51 Gy·cm2 respectively. In PCI 43 case, those values were 198.73 Gy·cm2 and 120.13 Gy·cm2 respectively. In this study, for the first time, the diagnostic reference level of interventional cardiology procedures in Gyeongsang area were established. Using the diagnostic reference level of interventional cardiology procedures derived from this study, it will help to identify and improve the level of exposure dose in the region and country.

Packing effects on the intracavitary radiation therapy of the utaine lervix cancer ($^{192}Ir$source를 이용할 자궁경부암 강내치료시 사용하는 packing의 효과에 대한 고찰)

  • Cho, Jung-Kun;Lee, Du-Hyun;Si, Chang-Kun;Choi, Yoon-Kyung;Kim, Tae-Yoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • Purpose of the radio-therapy is maximize the radiation dose to the tumor while minimizing the dose to the critical organ. Carcinoma of the uterine cervix treatment are external irradiation or an interstitial brachtheraphy make use of isotope. Brachytherapy is a method of radiotherapy in advantage to achieve better local control with minimum radiation toxicity in comparison with external irradiation because radiation dose is distributed according to the inverse square low of gamma-ray emitted from the implanted sources. Authors make use of the patients data which 192Ir gives medical treatment intrcavity. Intracavitary radiation of the uterine cervix cancer, critical organ take $20\%$ below than exposure dose of A point in the ICRU report. None the less of the advice, Radiation proctitis and radiation cystitis are frequent and problematic early complications in patients treated with radiation for the uterine cervix cancer. In brachytherapy of uterine cervical cancer using a high dose rate remote afterloading system, it is of prime importance to deliver a accurate dose in each fractionated treatment by minimizing the difference between the pre-treatment planned and post-treatment calculated doses. Use of packing to reduce late complications intracavitary radiation of the uterine cervix cancer. Bladder and rectum changes exposure dose rate by radiotherphy make use of packing.

  • PDF

Development of a Spectrum Analysis Software for Multipurpose Gamma-ray Detectors (감마선 검출기를 위한 스펙트럼 분석 소프트웨어 개발)

  • Lee, Jong-Myung;Kim, Young-Kwon;Park, Kil-Soon;Kim, Jung-Min;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • We developed an analysis software that automatically detects incoming isotopes for multi-purpose gamma-ray detectors. The software is divided into three major parts; Network Interface Module (NIM), Spectrum Analysis Module (SAM), and Graphic User Interface Module (GUIM). The main part is SAM that extracts peak information of energy spectrum from the collected data through network and identifies the isotopes by comparing the peaks with pre-calibrated libraries. The proposed peak detection algorithm was utilized to construct libraries of standard isotopes with two peaks and to identify the unknown isotope with the constructed libraries. We tested the software by using GammaPro1410 detector developed by NuCare Medical Systems. The results showed that NIM performed 200K counts per seconds and the most isotopes tested were correctly recognized within 1% error range when only a single unknown isotope was used for detection test. The software is expected to be used for radiation monitoring in various applications such as hospitals, power plants, and research facilities etc.