• Title/Summary/Keyword: 단 입자

Search Result 485, Processing Time 0.029 seconds

Analysis of High Volume Slit Type Two-Stage Virtual Impactor for Particle Size Classification (특정크기 입자농축을 위한 대유량 슬릿형 2단 가상충돌기의 성능분석)

  • 박성호;김상수;오명도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.285-291
    • /
    • 1991
  • A two-stage slit type virtual impactor based on the concept of the single stage virtual impactor has been designed, fabricated, and evaluated for the purpose of concentrating the suspended particles in the air with the size range of 1.8-4.5 .mu.m and handling large flow volume. Monodisperse methylene blue particles have been generated with vibrating orifice aerosol generator (VOAG). The separation efficiency and concentration efficiency have been measured by the UV-visible absorption spectrometry. Previous study for a single stage virtual impactor were used to determine the design parameters such as 50% cut-off sizes and dimensions of the two stage virtual impactor. The separation efficiency curve and 50% cut-off Stokes number(cut-off sizes) are not sensitive to the nozzle Reynolds number, but sensitive to the ratio between the minor flow rate and the total flow rate, The measured concentration efficiency was compared with the maximum concentration efficiency determined by the separation efficiencies of the first and the second stages. The differences between the measured and the maximum concentration efficiencies result from the wall loss due to the deposited particles on the internal walls inside the impactor.

Characteristics of Indoor PM2.5 and the effect of air purifier and ventilation system on Indoor PM2.5 in the Knowledge Industrial Center office during the atmospheric PM2.5 warning (초미세먼지 주의보 시 지식산업센터 사무실의 실내 초미세먼지 농도 특성과 공기청정기와 환기장치의 영향)

  • Ji, Jun-Ho;Joo, Sang-Woo
    • Particle and aerosol research
    • /
    • v.16 no.3
    • /
    • pp.65-72
    • /
    • 2020
  • In this study, the indoor fine dust concentration in an office of the Korea Knowledge Industry Center was measured for about 80 hours when the concentration of atmospheric PM2.5 was very high. The effect of the operation of the air cleaner and the forced ventilation system on the indoor PM2.5 was investigated, and the particle size distribution of the indoor and outdoor particles was analyzed. When forced ventilator and air purifiers were partially used, the indoor PM2.5 concentrations were maintained between 27.7 ㎍/㎥ and 32.9 ㎍/㎥ when the atmospheric PM2.5 was 127.7 ㎍/㎥ to 141.6 ㎍/㎥ during working hours. It is more effective to operate the air purifier without operating the forced ventilation system when the concentration of the PM2.5 is high since the PM2.5 penetrating the installed filter is continuously introduced indoor from the outside.

Monodisperse Particle Charging Characteristics in a DC-plasma (플라즈마내 입자의 하전특성에 관한 연구)

  • 최석호;김곤호;안강호
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.261-266
    • /
    • 1998
  • Since the particles are highly charged in process plasmas, the dynamics of the particles are concerned principally with the effect of the charging amount and polarity. In order to investigate the charging effect of the particles in the plasmas, the known sizes of the mono-dispersed particles with 0.05$\mu\textrm{m}$, 0.07$\mu\textrm{m}$, 0.1$\mu\textrm{m}$and 0.2$\mu\textrm{m}$ diameter are introduced into the DC air-plasmas. The characteristics of the charged particles are measured with a Faraday cup. Results show that the particle charging polarity depends on the concentrations and sizes of the particles and the condition of plasma generation, operating pressure, and power. It is also found that the number of charges per a particle is in the ranges of $10^3$~$ 10^5$.

  • PDF

About Short-stacking Effect of Illite-smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 단범위적층효과에 대한 고찰)

  • Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Illite-smectite mixed layers (I-S) occurring authigenically in diagenetic and hydrothermal environments reacts toward more illite-rich phases as temperature and potassium ion concentration increase. For that reason, I-S is often used as geothermometry and/or geochronometry at the field of hydrocarbons or ore minerals exploration. Generally, I-S shows X-ray powder diffraction (XRD) patterns of ultra-thin lamellar structures, which consist of restricted numbers of sillicate layers (normally, 5 ~ 15 layers) stacked in parallel to a-b planes. This ultra-thinness is known to decrease I-S expandability (%S) rather than theoretically expected one (short-stacking effect). We attempt here to quantify the short stacking effect of I-S using the difference of two types of expandability: one type is a maximum expandability ($%S_{Max}$) of infinite stacks of fundamental particles (physically inseparable smallest units), and the other type is an expandability of finite particle stacks normally measured using X-ray powder diffraction (XRD) ($%S_{XRD}$). Eleven I-S samples from the Geumseongsan volcanic complex, Uiseong, Gyeongbuk, have been analyzed for measuring $%S_{XRD}$ and average coherent scattering thickness (CST) after size separation under 1 ${\mu}m$. Average fundamental particle thickness ($N_f$) and $%S_{Max}$ have been determined from $%S_{XRD}$ and CST using inter-parameter relationships of I-S layer structures. The discrepancy between $%S_{Max}$ and $%S_{XRD}$ (${\Delta}%S$) suggests that the maximum short-stacking effect happens approximately at 20 $%S_{XRD}$, of which point represents I-S layer structures consisting of ca. average 3-layered fundamental particles ($N_f{\approx}3$). As a result of inferring the $%S_{XRD}$ range of each Reichweite using the $%S_{XRD}$ vs. $N_f$ diagram of Kang et al. (2002), we can confirms that the fundamental particle thickness is a determinant factor for I-S Reichweite, and also that the short-stacking effect shifts the $%S_{XRD}$ range of each Reichweite toward smaller $%S_{XRD}$ values than those that can be theoretically prospected using junction probability.

Synthesis of Cerium Doped Yttrium Aluminum Garnet Hollow Phosphor Based on Kirkendall Effect

  • Kim, Min-Jeong;Suphasis, Roy;Gong, Dal-Seong;Jeong, Hyeon-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.185-185
    • /
    • 2012
  • 중공 발광 나노 물질은 특유의 구조적 특성(낮은 밀도, 높은 비표면적, 다공성 물질, 낮은 열팽창계수 등)과 광학적 성질을 이용하여 디스플레이 패널, 광결정, 약물전달체, 바이오 이미징 라벨 등의 다양한 적용이 가능하다. 이러한 적용에 있어 균일한 크기와 형태의 중공 입자는 필수 조건으로 여겨진다. 지금까지 합성된 중공 발광 입자에는 BaMgAl10O17 : Eu2+-Nd3+, Gd2O3 : Eu3+, $EuPO_4{\cdot}H_2O$과 같은 것들이 있으나 크기 조절이 어렵고, 그 균일성이 확보되지 못하였다. 균일한 크기의 중공 발광 입자를 만들기 위해 SiO2나 emulsion을 템플릿으로 이용하여 황화카드뮴, 카드뮴 셀레나이드 중공 입자를 합성한 예가 있으나, 양자점의 독성으로 인하여 바이오분야 응용에는 적합하지 않다. YAG는 모체로써 형광체에서 가장 많이 이용되는 물질로, 화학적 안정성과 낮은 독성, 높은 양자 효율 등 많은 장점을 갖고 있다. 특히 세륨이 도핑된 YAG형광체의 경우 WLED, 신틸레이터, 바이오산업에 적용이 가능하다. 그러나 지금까지 중공 YAG:Ce3+형광체를 합성한 예가 없었다. 본 연구에서는 단분산 수화 알루미늄 (Al(OH)3) 입자 위에 세륨이 도핑 된 이트륨 베이직 카보네이트 ($Y(OH)CO_3$)를 균일하게 코팅한 후 열처리를 하여 균일한 크기의 Y3Al5O12:Ce3+(YAG) 중공 입자를 합성하였다. 열처리 온도에 따른 고분해능 투과 전자 현미경(HRTEM), X-선 회절(XRD), 고분해능 에너지 분광법(HREDX) 분석결과, 중공 YAG: Ce3+입자는 Kirkendall 효과에 의해 형성됨을 확인하였다. 전계방사형 주사 전자 현미경(FE-SEM) 측정을 통해, 열처리 후에도 입자의 크기와 형태가 균일함을 확인하였으며, 공초점 현미경 관찰을 통해 중공 형태를 명확히 확인 할 수 있었다. Photoluminescence (PL) 분광법과 형광 수명 이미징 현미경(FLIM)을 이용한 광 특성 분석결과, 합성된 입자는 400-500 nm에서 흡수 파장 (456 nm에서 최대 강도)과 500-700 nm 범위의 발광 파장(544 nm에서 최대 강도)을 나타냈고, 상용 YAG: Ce3+(70 ns)에 준하는 74 ns의 잔광 시간(decay time)이 측정되었다. 단분산 수화 알루미늄 입자의 크기를 조절하여 최종 합성된 YAG: Ce3+의 크기를 조절할 수 있었다. 지름 약 600 nm의 Al(OH)3를 사용한 경우, $1,300^{\circ}C$에서 열처리를 한 후 평균 지름 590 nm의 중공입자를 합성하였고, 약 170 nm의 Al(OH)3를 이용하여, 더 낮은 온도인 $1,100^{\circ}C$에서의 열처리를 통해 평균지름 140 nm의 중공 YAG: Ce3+입자를 합성하였다. 본 연구를 통하여 합성된 균일한 크기의 YAG 중공입자는 LED와 같은 광전변환 소자 및 다기능성 바이오 이미징 등의 나노바이오 소자 분야에 활용될 수 있음이 기대된다.

  • PDF

Study on Heat-shield Property of Surface-treated Inorganic Oxide Particles (표면처리된 무기산화물 입자의 열차단 특성에 관한 연구)

  • Kim, Dong Ho;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2013
  • In this study, we produced heat-shield coating materials using surface-treated Ga-doped ZnO (GZO) and investigated the dispersity of particle, visible light transmittance, ultraviolet light cut off, infrared light cut-off, heat-shielding property by surface-treating compounds and treatment conditions. In the case of using IPA or acryl binder for heat-shield coating, the dispersity of inorganic oxide particles was poor but in the case of using surface-treated inorganic oxide particles by hybrid compound having urethane (urea) group, acryl group and silica, dispersity of particle, visible light transmittance and haze were improved. We used the measurement kit and sunlamp for measuring heat-shielding property and confirmed that the internal temperature of the measurement kit using heat-shield film was lower more than $4.8^{\circ}C$ in comparison with using PET film for itself.

Combustion Modeling of Nano/Micro Aluminum Particle Mixture (나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링)

  • Yoon, Shi-Kyung;Shin, Jun-Su;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.15-25
    • /
    • 2011
  • One dimensional combustion modeling of aluminum combustion behavior is proposed. Combustion model is assumed that region consists as follows ; preheat, reaction, post reaction region. Flame speed as a function of particle size, equivalence ratio for unitary particles and fraction ratio of micro to nano particle size for binary particles were investigated for lean burn condition at 1 atm. Results were compared with experimental data. For unitary particles, flame speed increase as particle size decreases, but opposite trend with equivalence ratio. For binary particles, flame speed increases proportionally as nano particle fraction increases. For flame structure, separated or overlapping flames are observed, depending on the fraction of nano sized particles.

Aerosol Particle Analysis Using Microwave Plasma Torch (마이크로파 플라즈마 토치를 이용한 에어로졸 입자 분석)

  • Kim, Hahk-Joon;Park, Ji-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.204-207
    • /
    • 2011
  • A particle counting system that can also provide sensitive, specific chemical information, while consuming very less power, occupying less space, and being inexpensive has been developed. This system uses a microwave plasma torch (MPT) as the excitation source for atomic emission spectrometry (AES). Emission from a single particle can be detected, and the wavelength at which the emission is observed indicates the elements present in the particle. It is believed that correlating the particle size and emission intensity will allow us to estimate the particle size in addition to abovementioned capabilities of the system. In the long term, this system can be made field-portable, so that it can be used in atmospheric aerosol monitoring applications, which require real-time detection and characterization of particles at low concentrations.