• Title/Summary/Keyword: 단일 액적 충돌

Search Result 11, Processing Time 0.022 seconds

Wetting Characteristic of Single Droplet Impinging on Hole-Patterned Texture Surfaces (홀 패턴 텍스쳐 표면에서 충돌하는 단일 액적의 젖음 특성)

  • Moon, Joo Hyun;Lee, Sangmin;Jung, Jung-Yeul;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • This study presents the dynamic wetting characteristics of an impact droplet on hole-patterned textured surfaces. The flat surfaces were manufactured by a drilling machine to generate the micro-order holes, leading to make the surface hydrophobic. Other flat surfaces were fabricated by the anodizing technique to make hydrophilic texture surfaces with a nanometer order. For hydrophilic and hydrophobic textured surfaces with similar texture area fractions, the impinging droplet experiments were conducted and compared with flat surface cases. As results, an anodized textured surface decreases apparent equilibrium contact angle and increases contact diameters, because of increase in contact area and surface energy. This is attributed to more penetration inside holes from larger capillary pressure on nanometer-order holes. On the other hand, temporal evolution of the contact diameter is smaller for the hydrophobic textured surface from less penetration on the micro-order holes.

A Study on the Phenomena of Droplet Impact onto a Liquid Film (단일 액적의 고체 표면 액막과의 충돌 현상에 관한 연구)

  • Ko, C.S.;Yu, J.H.;Choe, N.W.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper an experimental study is presented to investigate the dynamic behavior of impacting droplet onto a liquid film. The main parameters are the droplet velocity and the thickness of the liquid film. Photographic images are presented to show the formation of crown, central jet and disintegrating droplet from the central jet. The emphasis is on presenting the time evolution of crown diameter, crown height, central jet height and the size of disintegrating droplet from the central jet. The diameter and height of crown are higher for faster droplet and thinner liquid film. On the other hand, the height of central jet are higher for faster droplet and thicker liquid film. The size of disintegrating droplet from the central jet heavily depends on the droplet velocity; Larger droplet is produced with faster falling droplets.

Preliminary Investigation on Spread-Rebound Regime of an Electrically Charged Droplet (전기적으로 대전된 액적의 스프레드-리바운드 거동 영역에 대한 기초 연구)

  • Ryu, Sung-Uk;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2067-2072
    • /
    • 2007
  • Understanding of the impinging behavior of an electrically charged spray is essential in determining appropriate operating conditions for electro-spraying of paints, surface coating materials and insecticides. In the present work, as an initial step, the wall impact of an electrically charged droplet has been experimentally investigated. The charged drops were directed on the surface of a paraffin wax, and the impinging behavior was visualized and recorded using a CCD camera to identify the impingement regime. The spread-rebound boundary for the charged drop turned out to be smaller compared to that for an electrically neutral droplet under the same surface condition. The shift of the transition criterion is considered to be due to the discrepancy between the maximum spread ratio of the electrically charged droplet and that of the neutral droplet.

  • PDF

Investigation of Spread-Splash Transition Criterion of an Electrically Charged Droplet (전기적으로 대전된 액적의 스프레드-스플래시 영역 간 천이조건에 대한 연구)

  • Ryu, Sung-Uk;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2995-3000
    • /
    • 2008
  • Understanding of the impinging behavior of an electrically charged spray is essential in determining appropriate operating conditions for electro-spraying of paints, surface coating materials and insecticides. In the present work, the wall impact behavior of an electrically charged drop has been investigated and compared with that of a neutral drop experimentally. The critical Sommerfeld number representing the spread-splash boundary for the charged drop impacting on the dielectric substrate turned out to be larger compared to that for the neutral drop with the same surface condition. The change of the transition boundary is due to the increase in the surface wettability of the drop on the substrate. However, with the electrically conducting substrates, the charging effect on the transition boundary appeared negligible. This is because the electric discharging time is much shorter than the time required for the flattened drop to reach its maximum extent.

  • PDF

A Study on the Behavior of a Droplet Impacting onto a Heated Surface (고온 벽면과 충돌하는 단일 액적의 거동에 관한 연구)

  • Kang, Bo-Seon;Lee, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.871-880
    • /
    • 1999
  • In this paper an experimental study is presented of the problem of dynamic behavior of a water droplet impinging upon a heated surface. The experiments are mainly focused on the effects of impinging angle of a droplet and surface temperature on the impact dynamics of the droplet. It Is clarified that the droplet exhibits much different behavior depending on the normal momentum of an impinging droplet before impact. At surface temperature In the nucleate boiling regime. the disintegration of a droplet doesn't occur, whereas the deforming droplet adheres to the surface. The spreading and contraction of the liquid film is repeated a couple of times for the horizontal surface but the expanded droplet just slips without noticeable contraction for the inclined surfaces. In the film boiling regime, the impinging droplet spreads over the surface as a liquid film which is separated from the surface by produced vapor. Depending on the magnitude of the normal momentum of the droplet the disintegration into the several irregular shapes of liquid elements occurs for the horizontal and 30o-inclined surfaces, whereas the impinging droplet for the 60o-inclined surface doesn't break up and tends to recover the original spherical shape.

Spreading Characteristics of a Liquid Droplet Impacting Upon the Inclined Micro-textured Surfaces (기울어진 미세 텍스쳐 표면에 충돌하는 단일 액적의 퍼짐 특성)

  • Shin, Dong-Hwan;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • The present study investigated experimentally the spreading characteristics of a single liquid impinging on the inclined micro-textured aluminum (Al 6061) surfaces manufactured by using a micro computerized numerical control (${\mu}$-CNC) milling machine. The textured surfaces were composed of patterned micro-holes (diameter of $125\;{\mu}m$ and depth of $125\;{\mu}m$). In our experiment, the de-ionized (DI) water droplet of $4.3\;{\mu}l$ was impinged normally on the non-textured and textured surfaces at two different Weber numbers, and the droplet impinged on the inclined surfaces with different angles. A high speed camera was used to capture sequential digital images for measurement of the maximum spreading distance. It was found that for the textured surface, the measured apparent equilibrium contact angle (ECA) increased up to $105.8^{\circ}$, higher than the measured ECA of $87.6^{\circ}$ for the non-textured (bare) surface. In addition, it is conjectured that the spreading distance decreased because of a liquid penetration during droplet spreading through the holes, the increase in hydrophobicity, and viscous dissipation during impact process.

Spreading and Deposition Characteristics of a Water Droplet Impacting on Hydrophobic Textured Surfaces (소수성 텍스쳐 표면에 충돌한 단일 액적의 퍼짐 및 고착 특성)

  • Lee, Jae-Bong;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • The present study conducts experimental investigation on spreading and deposition characteristics of a $4.3{\mu}l$ de-ionized (DI) water droplet impacting upon aluminum (Al 6061) flat and textured surfaces. The micro-textured surface consisted the micro-hole arrays (hole diameter: $125{\mu}m$, hole depth: $125{\mu}m$) fabricated by the conventional micro-computer numerical control (${\mu}$-CNC) milling machine process. We examined the surface effect of texture area fraction ${\varphi}_s$ ranging from 0 to 0.57 and impact velocity of droplet ranging from 0.40 m/s to 1.45 m/s on spreading and deposition characteristics from captured images. We used a high-speed camera to capture sequential images for investigate spreading characteristics and the image sensor to capture image of final equilibrium deposition droplet for analyze spreading diameter and contact angle. We found that the deposition droplet on textured surfaces have different wetting states. When the impact velocity is low, the non-wetting state partially exists, whereas over 0.64 m/s of impact velocity, totally wetting state is more prominent due to the increase kinetic energy of impinging droplet.

A Visualization Study on the Characteristics of Droplets Impinging on a Hot Surface (고온 열판에 충돌하는 액적의 거동에 대한 유동가시화 연구)

  • Kim, Dong-Yeon;Yi, Seung-Jae;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • Hydrophobic characteristics of high temperature metal surface were investigated by high-speed visualization of water droplet impact. An aluminum plate was used as the sample plate and the initial diameter of a water droplet was 2 mm. Transient behavior of a single droplet impinging on the surface with and without heating was captured by using a high speed camera running at 4,000 frames per second. The Leidenfrost phenomenon was demonstrated for the case of $300^{\circ}C$ surface temperature, however there was no rebounding of droplet on the cold plate due to hydrophilic nature. The experimental results show that the shape evolution of a droplet impinging on the surface varies with the Weber number, i.e. the ratio of impact inertia to capillary force. The overall water-repellent characteristics of the heated surface was very similar to that of the super hydrophobic surfaces.

Surface Wetting Effect on Spread-Splash Transition Criterion (표면 젖음성이 스프레드-스플래시 영역 간 천이 조건에 미치는 효과)

  • Ryu, S.U.;Lee, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.198-203
    • /
    • 2007
  • In the present work, surface wetting effect on spread-splash regime and transition criterion of the water and ethanol droplets impacting an unheated dry wall has been experimentally investigated. The droplet was directed on a polished STS plate and a glass slide, and the impinging behavior was visualized and recorded using a CCD camera. Droplet diameter and velocity approaching the wall were measured as well. The critical Sommerfeld number representing the spread-splash boundary for the ethanol droplet impinging on the substrates turned out to be smaller compared to that for the water droplet impinging on the substrates with the surface roughness condition remained unchanged. The shift of the transition boundary is considered to be due to the effect of the surface wettability represented by static contact angle and surface tension of droplet.

  • PDF

Effects of Surface Roughness on Evaporation Cooling of Single Water Droplet in Radiative Fields (복사장 내에서 충돌면의 표면조도가 단일액적 증발냉각에 미치는 영향)

  • 유갑종;박철우;장충선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.467-474
    • /
    • 2004
  • This paper presents the results of an experimental investigation for the effect of radiant heat on the evaporation cooling of water droplet in the process of fire extinguishing. The experiments are mainly focused on the surface temperature, the surface roughness and the droplet diameter. The range of surface temperature is T$_{s}$ =80-14$0^{\circ}C$, surface roughness is R$_{a}$=0.08-0.64 ${\mu}{\textrm}{m}$ and the droplet diameter is $\Phi$=3.0 mm in the radiation. The results show that the evaporation time is shorter for the larger surface roughness and the volume of droplet increased when the surface roughness is 0.64 ${\mu}{\textrm}{m}$ at the surface temperature 127$^{\circ}C$. When the surface roughness is 0.64 ${\mu}{\textrm}{m}$, the heat flux is larger than the surface roughness is 0.08 ${\mu}{\textrm}{m}$ at the surface temperature 81$^{\circ}C$.>.>.