• Title/Summary/Keyword: 단일벽탄소나노튜브

Search Result 117, Processing Time 0.028 seconds

Separation of Single-Walled Carbon Nanotubes by Length and Diameter (단일벽 탄소 나노튜브의 길이와 지름에 따른 분류)

  • Oh Young-Seok;Lee Dock-Jin;Chang Yyun-Seok;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.171-178
    • /
    • 2006
  • The sonication mettled is widely used with surfactants to suspend individual single-walled carbon nanotubes in solution, and it is well known that sonication-induced tube cutting occurs. Recently, it is found out that ultrasonicated nanotubes yield simultaneous separation by tube length and diameter. Nanotubes that have been cut shortest possess the greatest enrichments of large-diameter species. In this study, single-walled carbon nanotubes are cut using a ball milling method. Similar fracture behavior is observed fur the ball milled nanotubes: i.e., large diameter tubes are cut shorter. The ability to separate carbon nanotubes by diameter and length will contribute to tile development of nanotube-based applications.

Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis (단일벽 탄소나노튜브의 표면 전도도 조절 및 유전영동에 대한 영향)

  • Hong Seung-hyun;Jung Se-hun;Kim Young-jin;Choi Jae-bong;Baik Seunghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.179-186
    • /
    • 2006
  • Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single-walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. The surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimenthylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.

Actuaots based on Single Walled Carbon Nanotube (단일벽 탄소 나노튜브의 엑츄에이터 응용)

  • Oh, Young-Seok;Cao, Cheng-Fan;Choi, Jae-Boong;Kim, Young-Jin;Baik, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1387-1390
    • /
    • 2006
  • Several actuation mechanism for carton nanotubes has teen reported recently, including actuation by double-layer charge injection and ac voltages applyied to multiple electrodes. Carbon nanotube actuator based on double layer charge injection work well in electrolyte at low voltage. AC dielectrophoresis based on four electrode geometry demonstrated carton nanotubes in solution phase can be oriently manipulated by dielectrophoresis. From this point of view, and in regard to their performance, bucky paper actuator may alternate natural muscle. also, applied AC signal with appropriate magnitude and frequency together with four electrode arrangement has potential to realize nanotube electrokinetics.

  • PDF

The Quantitative Characterization of the Dispersion State of Single-Walled Carbon Nanotubes (단일벽 탄소나노튜브의 분산도 정량적 평가)

  • Yoon, Do-Kyung;Choi, Jae-Boong;Kim, Young-Jin;Baik, Seung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.483-489
    • /
    • 2007
  • We have investigated quantitative measurement techniques of the degree of dispersion of single-walled carbon nanotubes (SWNTs). SWNTs were suspended in aqueous media using a sodium dodecyl sulfate (SDS) surfactant. SWNTs with different dispersion states were prepared by controlling the intensity and time of sonication and centrifugation. The laser spectroscopic techniques were employed to characterize the dispersion state; i.e., raman fluorescence and absorption spectroscopic techniques. Raman spectroscopy has been used to probe the dispersion and aggregation state of SWNTs in solution. Individually suspended SWNTs show increased fluorescence peaks and decreased roping peaks at a raman shift 267 $cm^{-1}$ compared with the samples containing bundles of SWNTs. The ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectrum of decanted supernatant samples show sharp van Hove singularity peaks

Preparation of Carbon Nanotubes and Carbon Nanowires from Methane Pyrolysis over Pd/SPK Catalyst (Pd/SPK 촉매상에서 메탄의 열분해 반응으로부터 탄소 나노튜브 및 탄소 나노선의 제조)

  • Seo, Ho Joon;Kwon, Oh Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.94-97
    • /
    • 2007
  • Carbon nanotubes and nanowires were prepared by methane pyrolysis over Pd(5)/SPK catalyst by changing oxygen molar ratio in a fixed bed flow reactor under atmospheric condition and also analyzed by SEM and TEM. When the $CH_4/O_2$ molar ratio was 1, carbons were not almost deposited on the catalyst bed support, but when it was 2, carbons were deposited as much as plugging reactor. TEM and SEM images for the deposited carbons showed a number of single-walled carbon nanotubes and carbon nanowires. The growth mechanism of carbon nanotubes produced on the catalyst surface was the tip growth mode. It should be played an important role in carbon nanotubes and nanowires produced on the catalyst bed support to formate the carbon growth velocity vectors and nuclei of ring structure of carbon nanowires. SPK carrier was $N_2$ isotherm of IV type with mesopores, and excellent in the thermal stability.

Development of Epoxy Composites with SWCNT for Highly Thermal Conductivity (고방열 재료 개발을 위한 에폭시/단일벽 탄소나노튜브 복합체 개발)

  • Kim, Hyeonil;Ko, Heung Cho;You, Nam-Ho
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Over the past decade, liquid crystalline epoxy (LCER) has attracted much attention as a promising matrix for the development of efficient heat dissipation materials. This study presents a comprehensive study including synthesis, preparation and chacterization of polymer/inorganic composites using typical 4,4-diglycidyloxybiphenyl (DP) epoxy among LECR. To confirm the thermal conductivity of composite materials, we have prepared composite samples composed of epoxy resin and single-wall carbon nanotube (SWCNT) as a filler. In particular, DP composites exhibit higher thermal conductivity than commercial epoxy composites that use the same type of filler due to the highly ordered microstructure of the LCER. In addition, the thermal conductivity of the DP composite can be controlled by controlling the amount of filler. In particular, the DP composite containing a SWCNT content of 50 wt% has the highest thermal conductivity of 2.008 W/mK.