• Title/Summary/Keyword: 단위유량도

Search Result 532, Processing Time 0.027 seconds

Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System (합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발)

  • Yoo, Hyung Ju;Lee, Seung Oh;Choi, Seo Hye;Park, Moon Hyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • In most cases of the water balance analysis, the return flow ratio for each water supply was uniformly determined and applied, so it has been contained a problem that the volume of available water would be incorrectly calculated. Therefore, sewage and wastewater among the return water were focused in this study and the data-driven model was developed to forecast the outflow from the sewage treatment plant. The forecasting results of LSTM (Long Short-Term Memory), GRU (Gated Recurrent Units), and SVR (Support Vector Regression) models, which are mainly used for forecasting the time series data in most fields, were compared with the observed data to determine the optimal model parameters for forecasting outflow. As a result of applying the model, the root mean square error (RMSE) of the GRU model was smaller than those of the LSTM and SVR models, and the Nash-Sutcliffe coefficient (NSE) was higher than those of others. Thus, it was judged that the GRU model could be the optimal model for forecasting the outflow in sewage treatment plants. However, the forecasting outflow tends to be underestimated and overestimated in extreme sections. Therefore, the additional data for extreme events and reducing the minimum time unit of input data were necessary to enhance the accuracy of forecasting. If the water use of the target site was reviewed and the additional parameters that could reflect seasonal effects were considered, more accurate outflow could be forecasted to be ready for climate variability in near future. And it is expected to use as fundamental resources for establishing a reasonable river water management system based on the forecasting results.

Evaluating the economic benefit of diverse drought mitigation strategies for Korean reservoir systems based on simulated inflow sequences (유입량 모의 기법을 활용한 국내 다목적댐 가뭄 대책의 경제적 효과 평가)

  • Ji, Sukwang;Shin, Geumchae;Lee, Seungyub;Ahn, Kuk-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.485-496
    • /
    • 2023
  • Recently, South Korea has been making efforts to mitigate the risk of water scarcity during droughts by utilizing various drought response measures in dam operations. While various studies have been conducted on this topic, there is currently a lack of research on the economic effects of drought response measures. In this study, we evaluated the economic effects of drought response measures on nationwide multipurpose dams by using a long-term simulated inflow model based on ARIMA and Copula and a dam operation model that reflects drought response measures. The results showed that the expected benefits per unit flow rate were highest for coordinated operation and alternative water supply measures, at KRW 1,176 and KRW 1,139, respectively, while the benefits of emergency water supply utilization and water supply adjustment were estimated at KRW 956 and KRW 875, respectively. Additionally, when we examined the changes in the economic benefits of drought response measures based on the assumption of increased drought severity in the future, the changes in the drought risk resulting from reduced inflow increased the economic benefits of all drought response measures. The economic benefits of water supply adjustment increased by 2.6% compared to the baseline, while the economic benefits of coordinated operation and alternative water supply measures increased by 11.7% compared to the baseline. This suggests that dam-network-based measures, such as coordinated operation and alternative water supply measures, are crucial as drought risk increases. This study is expected to serve as a fundamental reference for selecting and utilizing drought response measures in the future.

Development of International Genetic Evaluation Models for Dairy Cattle (홀스타인의 국제유전평가를 위한 모형개발에 관한 연구)

  • Cho, Kwang Hyun;Park, Byoungho;Choi, Jaekwan;Choi, Taejeong;Choy, Yunho;Lee, Seungsu;Cho, Chungil
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was aimed to solve the problems of current national genetic evaluation systems in Korea and its development to pass the verification processes as required by International Bull Evaluation Service (Interbull). This will enable Korea to participate in international genetic evaluation program. A total of 1,416,589 test-day milk records with calving dates used in this study were collected by National Agricultural Cooperative Federation from 2001 to 2009. Parity was limited up to fifth calving and milk production records were adjusted to cumulative 305 day lactation. The pedigree consisted of 2,279,741 animals where 2,467 bulls had 535,409 parents. A newly developed multiple trait model was used in calculation of breeding values for milk yield, milk fat, and protein yield. Data were edited with SAS (version 9.2) and R programs, and genetic parameters were estimated using VCE 6.0. Results showed a continuous increase in genetic potentials, in general, and no remarkable differences were found between performances by parity. Except fat yield, potentials in milk yield and protein yield were well calculated. We found an increased number of daughters per each top ranked 1,000 bulls in recent years of calf births compared to the cases of previous evaluations. Of the bulls ranked top 100 by our new models (multiple-trait models) we found that increased numbers of bulls were included. Of twenty eight bulls born in 2006, twenty bulls born in 2007 and eight bulls born in 2008 that were listed by new models, only 23, 12, and 2 bulls born in respective years were represented on top 100 by old single-trait models. Re-ranking of the daughters or sires by multiple-trait models suggest that this new multiple trait approach should be used for dairy cattle genetic evaluation and seed-stock selection in the future to increase the accuracy of multiple trait selection. Breeding values for these traits should also be calculated by new method for international genetic evaluation.

Spatio-temporal Variations in the Dynamics and Export of Large Wood in Korean Mountain Streams (우리나라 산지계류에 있어서 유목 동태의 시.공간적 다양성과 그에 따른 유출 특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Suk Woo;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.333-343
    • /
    • 2012
  • In-stream large wood (LW) has a critical impact on the geomorphic characteristics relevant to ecosystem management and disaster prevention, yet relatively little is known about variations in its dynamics and subsequent export on the watershed-scale perspective in Korea. Here we review variations in the dynamics and subsequent export of LW as a function of stream size, which is appropriate for Korean mountain streams. In upstream channels with narrow bankfull widths and low stream discharges, a massive amount of LW, resulting from forest dynamics and hillslope processes, may persist for several decades on valley floor. These pieces, however, are eventually transported during infrequent debris flows from small tributaries, as well as peak hydrology in main-stem channels. During the transport, these pieces suffer fragmentation caused by frictions with boulders, and stream bank and bed. Although infrequent, these events can be dominant processes in the export of significant amounts of LW from upstream channel networks. In downstream channels with wide bankfull widths and high stream discharges, LW is dominantly recruited by forest dynamics and bank erosion only at locations where the channel is adjacent to mature riparian forests. With the LW pieces that are supplied from the upstream, these pieces are continuously transported downstream during rainfall events. This leads to further fragmentation of the LW pieces, which increases their transportability. With decreasing stream-bed slope, these floated LW pieces, however, can be stored and form logjams at various depositional sites, which were developed by interaction between channel forms and floodplains. These pieces may decay for decades and be subsequently transported as particulate or dissolved organic materials, resulting in the limitation of LW fluvial export from the systems. However, in Korea, such depositional sites were developed in the extremely limited streams with a large dimension and no flood history for decades, and thus it does not be expected that the reduction of LW export amount, which can be caused by the long-term storage. Our review presents a generalized view of LW processing and is relevant to ecosystem management and disaster prevention for Korean mountain streams.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

Assessing the Sensitivity of Runoff Projections Under Precipitation and Temperature Variability Using IHACRES and GR4J Lumped Runoff-Rainfall Models (집중형 모형 IHACRES와 GR4J를 이용한 강수 및 기온 변동성에 대한 유출 해석 민감도 평가)

  • Woo, Dong Kook;Jo, Jihyeon;Kang, Boosik;Lee, Songhee;Lee, Garim;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.43-54
    • /
    • 2023
  • Due to climate change, drought and flood occurrences have been increasing. Accurate projections of watershed discharges are imperative to effectively manage natural disasters caused by climate change. However, climate change and hydrological model uncertainty can lead to imprecise analysis. To address this issues, we used two lumped models, IHACRES and GR4J, to compare and analyze the changes in discharges under climate stress scenarios. The Hapcheon and Seomjingang dam basins were the study site, and the Nash-Sutcliffe efficiency (NSE) and the Kling-Gupta efficiency (KGE) were used for parameter optimizations. Twenty years of discharge, precipitation, and temperature (1995-2014) data were used and divided into training and testing data sets with a 70/30 split. The accuracies of the modeled results were relatively high during the training and testing periods (NSE>0.74, KGE>0.75), indicating that both models could reproduce the previously observed discharges. To explore the impacts of climate change on modeled discharges, we developed climate stress scenarios by changing precipitation from -50 % to +50 % by 1 % and temperature from 0 ℃ to 8 ℃ by 0.1 ℃ based on two decades of weather data, which resulted in 8,181 climate stress scenarios. We analyzed the yearly maximum, abundant, and ordinary discharges projected by the two lumped models. We found that the trends of the maximum and abundant discharges modeled by IHACRES and GR4J became pronounced as changes in precipitation and temperature increased. The opposite was true for the case of ordinary water levels. Our study demonstrated that the quantitative evaluations of the model uncertainty were important to reduce the impacts of climate change on water resources.

Performance assessment of an urban stormwater infiltration trench considering facility maintenance (침투도랑 유지관리를 통한 도시 강우유출수 처리 성능 평가)

  • Reyes, N.J. D.G.;Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.424-431
    • /
    • 2018
  • Stormwater runoff containing considerable amounts of pollutants such as particulates, organics, nutrients, and heavy metals contaminate natural bodies of water. At present, best management practices (BMP) intended to reduce the volume and treat pollutants from stormwater runoff were devised to serve as cost-effective measures of stormwater management. However, improper design and lack of proper maintenance can lead to degradation of the facility, making it unable to perform its intended function. This study evaluated an infiltration trench (IT) that went through a series of maintenance operations. 41 monitored rainfall events from 2009 to 2016 were used to evaluate the pollutant removal capabilities of the IT. Assessment of the water quality and hydrological data revealed that the inflow volume was the most relative factor affecting the unit pollutant loads (UPL) entering the facility. Seasonal variations also affected the pollutant removal capabilities of the IT. During the summer season, the increased rainfall depths and runoff volumes diminished the pollutant removal efficiency (RE) of the facility due to increased volumes that washed off larger pollutant loads and caused the IT to overflow. Moreover, the system also exhibited reduced pollutant RE for the winter season due to frozen media layers and chemical-related mechanisms impacted by the low winter temperature. Maintenance operations also posed considerable effects of the performance of the IT. During the first two years of operation, the IT exhibited a decrease in pollutant RE due to aging and lack of proper maintenance. However, some events also showed reduced pollutant RE succeeding the maintenance as a result of disturbed sediments that were not removed from the geotextile. Ultimately, the presented effects of maintenance operations in relation to the pollutant RE of the system may lead to the optimization of maintenance schedules and procedures for BMP of same structure.

Estimating the water supply capacity of Hwacheon reservoir for multi-purpose utilization (다목적 활용을 위한 화천댐 용수공급능력 평가 연구)

  • Lee, Eunkyung;Lee, Seonmi;Ji, Jungwon;Yi, Jaeeung;Jung, Soonchan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.437-446
    • /
    • 2022
  • In April 2020, the Korean government decided to operate the Hwacheon reservoir, a hydropower reservoir to supply water, and it is currently under pilot operation. Through the pilot operation, the Hwacheon reservoir is the first among the hydropower reservoirs in Korea to make a constant release for downstream water supply. In this study, the water supply capacity of the Hwacheon reservoir was estimated using the inflow data of the Hwacheon reservoir. A simulation model was developed to calculate the water supply that satisfies both the monthly water supply reliability of 95% and the annual water supply reliability of 95%. An optimization model was also developed to evaluate the water supply capacity of the Hwacheon reservoir. The inflow data used as input data for the model was modified in two ways in consideration of the impact of the Imnam reservoir. Calculating the water supply for the Hwacheon reservoir using the two modified inflows is as follows. The water supply that satisfies 95% of the monthly water supply reliability is 26.9 m3/sec and 24.1 m3/sec. And the water supply that satisfies 95% of the annual water supply reliability is 23.9 m3/sec and 22.2 m3/sec. Hwacheon reservoir has a maximum annual water supply of 777 MCM (Million Cubic Meter) without failure in the water supply. The Hwacheon reservoir can supply 704 MCM of water per year, considering the past monthly power generation and discharge patterns. If the Hwacheon reservoir performs a routine operation utilizing its water supply capacity, it can contribute to stabilizing the water supply during dry seasons in the Han River Basin.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF

A Study on the removal of nitrogen by combined nitrification and autotrophic denitrification (질산화와 무기영양 독립탈질화의 연계처리에 의한 질소제거에 관한 연구)

  • Han, Gee-Bong;Jeong, Da-Young;Woo, Mi-Hee;Kim, So-Yeon;Kim, Bio
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • Removal of nitrogen compound under nitrification related with denitrification by biofilm which developed on the porous media was investigated. With the investigation of $NH_4-N$ nitrification and autotrophic denitrification supplied with sulfur media as electron donor, conclusions were retrieved as follows. When $F/M_N$ ratio of $NH_4-N$ was increased from $0.0062-0.034gNH_4-N/g\;MLVSS{\cdot}day$ by the change of influent concentration and HRT the nitrification rate decreased as the increase of loading rate. Also under the same conditions of $F/M_N$ ratio, the alkalinity consumption rate of operation was higher at 8 hours of HRT than at 6 hours of HRT. Accordingly the influent loading rate variation by detention time with influent flow influenced more on the nitrification efficiency than the influent loading rate variation by the influent concentration did. Denitrification rate with various EBCT(Empty Bed Contact Time) showed average 25% at 8.4hrs of EBCT but sharply decreased average 5% at 4.6hrs of EBCT, so the operation would be more effective at above 8.4hrs of EBCT. Also denitrification rate was known to be adversely increased as $NO_3-N$ loading rate per unit volume of sulfur-media was decreased within the range of $0.5{\sim}2.0kgNO_3-N/m^3{\cdot}day$.

  • PDF