• Title/Summary/Keyword: 단열 시스템

Search Result 218, Processing Time 0.02 seconds

Geochemistuy of the Borehole Groundwater from Volcanic Rocks in the Northeastern Part of Yeosu Area (여수 북동부 화산암 지역 시추공 지하수의 지화학 특성)

  • 고용권;김경수;배대석;김천수;한경원
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.255-269
    • /
    • 2001
  • The geochemical studies on groundwater in the borehole, which is straddled by multi-packer (MP) system, were carried out from a volcanic terrain in the Yeosu area. The pH of groundwater collected from selected sections in the MP-installed borehole is much higher (up to 9.6) than that of the borehole groundwater (7.0-7.9) collected using conventional pumping technique. Hydrochemistry shows that the groundwater has a typical chemical change with increasing sampling depth, suggesting that the groundwater is evolved through water-rock interaction along the fracture-controlled flow paths. The groundwater from the deeper part (138-175 m below the surface) in borehole KI is characterized by the Ca-C11 type with high Ca (up to 160 mg/L) and Cl (up to 293 mg/L) contents, probably reflecting seawater intrusion. The groundwater also has high sodium and sulfate contents compared to the waters from other boreholes. These observed groundwater chemistry is explained by the cation exchange, sulfide oxidation, and mixing process with seawater along the flow path.

  • PDF

A study on the Optimum Design Configuration of Passive Solar TI-wall system (투명단열재가 적용된 축열벽 시스템의 최적구성 선정에 관한 연구)

  • Kim, Byoung-Soo;Yoon, Jong-Ho;Yoon, Yong-Jin;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this study was to analyze the thermal performance through Test-Cell of TI-wall in domestic climate. This study was carried out as follows: 1) The TI-wall was studied for ability to reduce heat loss through the building envelope and analyzed to TIM properties. 2) Test models of TI-wall were designed through the investigation of previous paper and work, measured for winter and spring, and the thermal effects were analyzed. The type of the TIM used in test model is small-celled(diameter 4mm and thickness 50mm) capillary and cement brick(density $1500kg/m^3$) was used by thermal mass. 3) Test-cell of TI-wall was calibrated from measured data and the dynamic simulation program ESP-r 9.0. In these simulations, the measured climate conditions of TaeJon were used as outdoor conditions, and the simulation model of Test-cell was developed. 4) The sensitivity analysis is executed in various aspects with standard weather files and ESP-r 9.0, and then most suitable system of TI-wall are predicted. Finally, The suitable system of TI-wall was analysed according to sizes of air gap, kinds, thickness, and the surface absorption of therm wall. The result is following. In TI-wall, Concrete is better than cement brick, at that time the surface absorption is 95%, and the most efficient thickness is 250mm. As smaller of a air gap, as reducer of convection heat loss, it is efficient for heating energy. However, ensuring of a air gap at least more than 50mm is desirable for natural ventilation in Summer.

Thermal Performance Evaluation Monitoring Study of Transparent Insulation Wall System (투명단열 축열벽 시스템의 열성능 평가 실험 연구)

  • Kim, B.S.;Yoon, J.H.;Yoon, Y.J.;Baek, N.C.;Lee, J.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various efforts to combine new high-tech materials with solar system have been progressed nowadays in order to improve the performance of the existing passive solar system. TIM(Transparent Insulation Material) replacing the conventional outer building envelope glazing as well as the wall is good example for this trend. TI integrated wall is a thermal mass wall with a special shaped TIM instead of using typical envelope materials The tested TIM type is a small(diameter 4mm and thickness 50mm) capillary tube of Okalux model and cement brick(density 1500kg/m3). The purpose of this study was to analyze the thermal performance through the actual measurements performed in a test cell. This study was carried out to justify the following issues. 1) the impact of Tl-wall over the temperature variations 2) the impact of mass wall surface absorptance over the transient thermal behavior and 3) the impact of thermal mass wall thickness over the temperature variations. Finally, as results indicated that the peak time of room temperature was shifted about one hour early when absorptance of thermal mass wall changed from 60% to 95% for the 190mm thickness thermal mass wall test case. the temperature difference of both surfaces of thermal mass wall surface showed about $23^{\circ}C$ during a day of March for the 380mm thickness thermal mass wall case. However, the thermal mass wall was over-heated by outside temperature and solar radiation in a day of May the temperature difference of both surfaces of thermal mass wall surface was indicated $10^{\circ}C$ and inside temperature was observed more than average 22C.

Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation (열변형 해석을 위한 허니컴 샌드위치 평판의 열 및 탄성 물성치 예측에 관한 연구)

  • Hong, Seok Min;Lee, Jang Il;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties.

Analysis on the Regenerator Characteristics for a Vuilleumier Heat Pump (Vuilleumier열펌프용 재생기 특성 해석)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1572-1583
    • /
    • 1993
  • This paper deals with the analysis method of regenerator characteristics for designing a vuilleumier heat pump. First, models for evaluating the reheat and the flow losses are established by the comparative study between already proposed ones. Calculations based on the second-order method are performed for the well-known schulz heat pump. Results show that operating conditions as well as design parameters significantly affect the regenerator performances. The effects of operating conditions on the reheat and the flow losses appear to be similar in trends in both the hot-warm and the cold-warm regenerators. However, the losses in the one regenerator vary oppositely to those in the other with specific design parameters such as the phase angle and the swept volume ratio being changed. Also, it is confirmed that there is an optimum aspect ratio(D/L) which minimizes total loss for each regenerator.

Thermal Environment Characteristic of the Heat Storage Gypsum Board Included with Phase Change Material (PCM 함유된 축열석고보드의 열환경특성)

  • Kwon, Oh-Hoon;Yun, Huy-Kwan;Han, Seong-Kuk;Ahn, Dae-Hyun;Shim, Myeong-Jin;Cho, Sung-Woon;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.570-574
    • /
    • 2010
  • The main function of conventional insulation materials is only to block the heat transfer and reduce heat loss from the building. On the other hand, thermal storage materials can work as an energy saver by absorbing or emitting heat within a specific temperature range. Thermal storage materials for building can maintain a constant temperature by effectively regulating the cycle of indoor temperature. As a result, we can enhance the performance of a cooling and heating system efficiently. In this study, phase change materials (PCMs) were added as thermal storage materials into gypsum boards which are extensively used for building material and we found out the thermal environmental characteristics. In addition, we checked out some problems when applying the thermal storage materials to buildings. Finally, This study set out to examine the degree of environmental-friendly characteristics of thermal storage building materials by analyzing the amount of TVOC and HCHO contents with the possibility of pollutants emission.

One Dimensional Analysis on Alcohol Burner Flow for Turbopump Operation (터보펌프 구동용 알코올버너 유동 일차원 해석)

  • Kim, Seong-Lyong;Wang, Seung-Won;Han, Young-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • TPTF (Turbopump Real Propellant Test Facility) at Naro Space Center has used alcohol burner system to simulate the gas flow of gas generator of liquid rocket engine. During the test at TPTF, the temperature and pressure at turbine inlet were smoothly increased while those of the gas generator of engine were constant. Present research developed a simulation code for the burner and the piping system and applied to the system. The calculation results were in good agreement with the test, and confirmed quantitatively that the non-steadiness is due to the heat transfer of the pipe. While the insulation of the pipe is ineffective, the length has a large impact on the turbine inlet condition. The present research clarified the empirically estimation of test condition, and can be applied to determination of the following test conditions.

Analysis of the Top Loss Coefficient for Flat Plate Collector in a Solar Air-Conditioning System during Winter (태양열 이용 냉난방 공조시스템중 평판형 집열기의 동계 상부 열손실 해석)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.;Kim, J.R.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.15-24
    • /
    • 1998
  • There are mainly 3 heat losses from solar collector; top, bottom, and edge heat loss. Usually edge heat loss is small so that could be neglected. Of the total thermal losses occurring in a flat plate solar collector, top loss heat losses are dominant. Therefore it is necessary to calculate the top loss coefficient accurately in order to find out performance of solar collector. The flat plate solar collector(regenerator in summer) used in this study was made for year-round all conditioning. In order to find out collector efficiency for heating in winter without a system change, outdoor experiment was done. The top loss coefficient of this collector was about 3 to $4.5W/m^2^{\circ}C$. Futhermore use of selective coating in trickling surface can improve a performance of flat plate solar collector.

  • PDF

Numerical Simulation of Catalyst Regeneration Process for Desulfurization Reactor (수치해석을 통한 탈황반응기용 촉매의 재생공정 분석)

  • Choi, Chang Yong;Kwon, Sang Gu;Liu, Jay;Im, Do Jin
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • In this study, we performed numerical simulation for the catalyst regeneration process of diesel desulfurization reactor. We analyzed the changes in regeneration process according to purge gas flow rate, catalyst permeability, reactor size, and heat loss of reactor. We have found that the regeneration process is very much affected by temperature changes whereas it is hardly affected by catalyst permeability and porosity. We also estimated the regeneration time according to purge gas flow rate and initial temperatures and have found that increasing purge gas temperature is more effect for fast regeneration. The present results can be utilized to design a regeneration process of diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

Automatic Insulation System in Greenhouses (온실의 자동단열시스템에 관한 연구)

  • 이석건
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.117-123
    • /
    • 1987
  • This study was conducted to develop an automatic insulation system to reduce the heat loss through the wall of greenhouses during the nighttime in winter. A double covered model vinyl house was constructed, and blowers were used to fill or remove styrene pellets automatically the inside of the double-wall of the double covered vinyl house. The effects of insulation of the double covered vinyl house insulated with the styrene pellets were analyzed by comparing with the single covered vinyl house. The results obtained from this study can be summarized as follows : 1. The optimum thickness of the double-wall of the double covered vinyl house was found to be 5 to 10 cm. 2.When the outside temperature varied in the range of -8.3 to -1.5$^{\circ}C$ during the nighttime, the inside temperature of the double covered vinyl house insulated with the styrene pellets showed 7.7 to 11.7$^{\circ}C$ and the inside temperature of the single covered vinyl house showed -5.8 to 2.3$^{\circ}C$. Therefore, the effects of insulation of the double covered vinyl house insulated with the styrene pellets were confirmed to be excellent. 3. Also, the excessive increase of the inside temperature in the vinyl house was prevented by the shading effect of the double covered vinyl house insulated with the styrene pellets during the daytime. 4. When the outside temperature varied in the range of 17.7 to 30.0$^{\circ}C$ during the daytime, it was possible to keep the inside temperature at 30${\pm}$4$^{\circ}C$ in the double covered vinyl house by operating the insulation system. 5. The transmissivity of the double covered vinyl house with the styrene pellets removed was 52.4 % on the average.

  • PDF