DOI QR코드

DOI QR Code

Numerical Simulation of Catalyst Regeneration Process for Desulfurization Reactor

수치해석을 통한 탈황반응기용 촉매의 재생공정 분석

  • Choi, Chang Yong (Department of Chemical Engineering, Pukyong National University) ;
  • Kwon, Sang Gu (Department of Chemical Engineering, Pukyong National University) ;
  • Liu, Jay (Department of Chemical Engineering, Pukyong National University) ;
  • Im, Do Jin (Department of Chemical Engineering, Pukyong National University)
  • 최창용 (국립부경대학교 화학공학과) ;
  • 권상구 (국립부경대학교 화학공학과) ;
  • 유준 (국립부경대학교 화학공학과) ;
  • 임도진 (국립부경대학교 화학공학과)
  • Received : 2016.10.02
  • Accepted : 2016.12.23
  • Published : 2017.06.30

Abstract

In this study, we performed numerical simulation for the catalyst regeneration process of diesel desulfurization reactor. We analyzed the changes in regeneration process according to purge gas flow rate, catalyst permeability, reactor size, and heat loss of reactor. We have found that the regeneration process is very much affected by temperature changes whereas it is hardly affected by catalyst permeability and porosity. We also estimated the regeneration time according to purge gas flow rate and initial temperatures and have found that increasing purge gas temperature is more effect for fast regeneration. The present results can be utilized to design a regeneration process of diesel desulfurization reactor for a fuel cell used in ships. Furthermore, the present work also can be used to design low sulfur diesel supply in oil refineries and therefore contribute to the development of clean petrochemical technology.

본 연구에서는 연료전지용 디젤 흡착 탈황 반응기에 사용된 촉매를 재생하는 공정을 수치해석을 통해 모사하고 분석하여 관련된 기초 공정 정보를 도출하였다. 촉매 재생에 사용되는 질소 퍼지가스의 유량, 충전된 탈황촉매의 투과율, 반응기의 크기, 반응기의 단열 성능에 따른 정상상태 해석을 통해 각각의 요소가 촉매 재생에 미치는 영향들을 살펴보았다. 온도의 영향을 거의 받지 않았던 탈황공정과 달리 촉매의 재생 공정에서는 온도 변화에 따라 영향을 크게 받았으며 이전 탈황 연구에서 중요한 공정 변수였던 충전된 촉매의 투과도, 충전층의 공극률 등은 큰 영향을 미치지 못했다. 비정상상태 해석을 수행하여 재생에 소요되는 시간을 예측하였으며 퍼지가스의 유량과 온도를 변화시키며 재생에 소요되는 시간을 분석한 결과, 퍼지가스의 유량을 높이는 것 보다 온도를 높이는 것이 재생에 더 효율적임을 확인하였다. 본 연구 결과는 선박 연료전지용 디젤의 흡착 탈황 반응기의 재생 공정 개발에 활용될 것으로 기대된다. 또한 본 결과는 연료전지뿐 아니라 일반적으로 정유사에서 생산되는 디젤유의 황 함유량을 감소시키는 저황 시스템 디자인에 활용될 수 있으며 이러한 의미에서 석유화학 산업의 청정화 기술 확보에 이바지할 것으로 기대된다.

Keywords

References

  1. Nam, J. G., "A Study of NOx Performance for Cu-Chabazite SCR Catalysts by Sulfur Poisoning and Desulfation," J. Korean Soc. Mar. Eng., 37(8), 855-861 (2013). https://doi.org/10.5916/jkosme.2013.37.8.855
  2. Lin, L., Zhang, Y., Zhang, H., and Lu, F., "Adsorption and Solvent Desorption Behavior of Ion-Exchanged Modified Y Zeolites for Sulfur Removal and for Fuel Cell Applications," J. Colloid Interface Sci., 360(2), 753-759 (2011). https://doi.org/10.1016/j.jcis.2011.04.075
  3. Seo, Y. T., Seo, D. J., Seo, Y. S., Roh, H. S., and Jeong, J. H., "Performance and Operational Characteristics of Natural Gas Fuel Processor for 1kW Class PEMFCs," Paper No. 4, KSNRE Spring Meeting, Jeju, Korea (Jun. 2006).
  4. Kwon, S. G., Liu, J., and Im, D. J., "Diesel Desulfurization Reactor Design for Fuel Cell by Computational Fluid Dynamics," Clean Technol., 21(4), 229-234 (2015). https://doi.org/10.7464/ksct.2015.21.4.229
  5. Ko, D., Kim, M., Moon, I., and Choi, D. K., "Analysis of Purge Gas Temperature in Cyclic TSA Process," Chem. Eng. Sci., 57(1), 179-195 (2002). https://doi.org/10.1016/S0009-2509(01)00358-X
  6. Lei, M., Vallieres, C., Grevillot, G., and Latifi, M. A., "Thermal Swing Adsorption Process for Carbon Dioxide Capture and Recovery: Modeling, Simulation, Parameters Estimability, and Identification," Ind. Eng. Chem. Res., 52(22), 7526-7533 (2013). https://doi.org/10.1021/ie3029152
  7. Alprekin, G., Jayaraman, A., Dubovik, M., Schaefer, M., Monroe, J., and Bradley, K., "Desulfurization of Logistic Fuels for Fuel Cell APUs," Paper No. ADA504273, 26th Army Science Conference, Orlando, FL (Dec. 2008).
  8. Ho, H. P., Kim, W. H., Lee, S. Y., Son, H. R., Kim, N. H., Kim, J. K., Park, J. Y., and Woo, H. C., "Adsorptive Desulfurization of Diesel for Fuel Cell Applications: A Screening Test," Clean Technol., 20(1), 88-94 (2014). https://doi.org/10.7464/ksct.2014.20.1.088
  9. Shin, D. W., and Kim, L. H., "A Comparison with CFD Simulation and Experiment for Steam-Methane Reforming Reaction in Double Pipe Continuous Reactor," J. Energ. Eng., 22(2), 226-236 (2013). https://doi.org/10.5855/ENERGY.2013.22.2.226
  10. Meng, X., de Jong, W., Badri, F. S., Benito, P., Basile, F., and Verkooijen, A. H., "Combustion Study of Partially Gasified Willow and DDGS Chars Using TG Analysis and COMSOL Modeling," Biomass Bioenerg., 39, 356-369 (2012). https://doi.org/10.1016/j.biombioe.2012.01.032
  11. Lee, Y. J., Park, N. K., and Lee, T. J., "The Adsorption of CODS with a Modified-Activated Carbon for Ultra-Cleanup of Coal Gas," Clean Technol., 13(4), 266-273 (2007).
  12. Nield, D. A., and Bejan, A., Convection in Porous Media, 4th ed., Springer, New York, 31-46 (2013).
  13. W. M. Haynes, CRC Handbook of Chemistry and Physics, 92nd ed., CRC Press, Boca Raton, 4.121-4.123 (2011).
  14. Hodges, S. C., and Johnson, G. C., "Kinetics of Sulfate Adsorption and Desorption by Cecil Soil Using Miscible Displacement," Soil. Sci. Soc. Am. J., 51(2), 323-331 (1987). https://doi.org/10.2136/sssaj1987.03615995005100020012x
  15. Wu, X., Nho, J., Kim, D. S., and Cho, J., "Comparison of Energy Consumption of Two-Column Configuration and Three-Column Configuration in the Extractive Distillation Process for High Purity Refinement of Isopropyl Alcohol," Asian J. Chem., 26(16), 5223-5229 (2014).