• Title/Summary/Keyword: 단열화염온도

Search Result 29, Processing Time 0.023 seconds

복사열 교란에 대한 고체 추진제 응답 함수의 FM 방법에 의한 수치적 계산

  • 김성인;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.22-22
    • /
    • 1999
  • 교란에 대한 고체 추진제의 연소율의 반등에 대한 이해는 고성능 추진제를 설계하는데 매우 중요한 요소이다. 그 동안의 연구는 고체 추진제의 표면에서 발생하는 교란이 매우 작은 크기로 발생한다는 선형적인 가정을 사용하여 이론적인 응답 함수를 구하였다. 특히 실험실에서 행해지는 교란에 대한 추진제의 응답 함수를 구하기 위하여 이용한 비집촉식 교란 방법을 사용하였다. 이 경우 추진제 표면으로 전달되는 복사열 전달의 크기는 레이저에 의한 복사 일전달과 기체 영의 화염에 의한 열전달을 동시에 고려하여야 한다. 그러나 언급하였던 것처럼 대부분의 이론적 연구는 추진제 표면의 온도 구매가 단열인 것으로 가정하여 진행하였다. 이러한 가정을 기체 영역으로부터 추진제로 전달되는 열전달 량이 작은 점소화초기 등에서 타당한 가정이나, 기체 영역에서 연소가 활발하게 진행되는 경우에는 비합리적인 가정이다. 본 연구에서는. 추진제의 응축 영역에서 분포 화학 반응이 발생하여, 기체 영역에서 화학반응에 의한 연소가 진행되는 경우, 복사 열전달의 교란에 대한 추진제의 응답함수를 수치적으로 계산하였다. 이때 기체 영역에서 발생하는 연소 반응은 De Luca 등에 의하여 제안된 실험적 모델인 $\alpha$ $\beta$ ${\gamma}$ 화염 모델을 사용하였으며, 추진제 표면에서의 열전달 균형에 의한 경계 조건을 사용하였다. 그러나 외부로부터 입사되는 복사광 레이저와 기체 영역의 상호 간섭은 고려하지 않았다. 수치 계산에 의한 응답 함수의 특징은 단열 조건이 사용된 이론적 응답 함수에 비하여 낮은 값을 나타내었으며, 최대치를 보이는 주파수 영역도 이론 함수에 비하여 다른 값을 보여주고 있다.연구 분석 결과 기술적 문제점으로는 배기 가스온도가 낮은데 따른 출구 부분의 Bearing, Sealing이 문제가 될 수 있다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.가 작으며, 본 연소관에 충전된 RDX/AP계 추진제의 경우 추진제의 습기투과에 의한 추진제 물성 변화는 미미한 것으로 나타났다.의 향상으로, 음성개선에 효과적이라고 사료되었으며, 이 방법이 편측 성대마비 환자의 효과적인 음성개선의 치료방법의 하나로 응용될 수 있으리라 생각된다..7%), 혈액투석, 식도부분절제술 및 위루술·위회장문합술을 시행한 경우가 각 1례(2.9%)씩이었다. 13) 심각한 합병증은 9례(26.5%)에서 보였는데 그중 식도협착증이 6례(17.6%), 급성신부전증 1례(2.9%), 종격동기흉과 폐염이 병발한 경우와 폐염이 각 1례(2.9%)였다. 14

  • PDF

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

An Experimental Study on the Combustion Characteristics with Superadiabatic Combustor in Porous Media (다공성물질을 이용한 초단열 연소장치에서의 연소특성의 실험적 연구)

  • Chae, J.O.;Dobrego, K.V.;Sim, M.S.;Chung, S.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.399-405
    • /
    • 1994
  • Beacuse of the energy resources exhaustion, the aggravating environmental air pollution and the smoke phenomena etc., the importance of clean gas fuel compared with liquid fuel is highly considered in recent years. The combustion system which consists of porous media is actively studied as a new method for solving above problems. Therefore, excess enthalpy combustion using porous media was interested by many researchers and investigated through numerical and experimental analysis. In this study, the simplified combustor has the unique combustion characteristics of mixture gas preheated effect using radiative and convective heat energy by changing the flow passage of unburned gas with solenoid valves and has the intensive excess enthalpy phenomena As the result of according to reduce equivalence ratio, flame temperature was remarkably higher than adiabatic flame temperature. This show the ability of super-lean combustion.

  • PDF

A Study on Flash Over Delay Effects on Applied Plate-Fire Spread Prevention Method at Sandwich Panels Structure (샌드위치패널 건축물 플래시오버 지연을 위한 화재확산방지플레이트 시공방법 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.79-87
    • /
    • 2017
  • Sandwich panels which are having the both sides are bonded with a heat insulating material with an iron plate are used as factories, warehouse structures as advantages of convenience in construction at economic efficiency of material cost. However, in a panel structure constructed by continuous joining of sandwich panels, a joint portion where a panel and a panel are connected is generated. The joint part is a part which is easily vulnerable to fire because flames easily flow into the melting and deformation of the iron plate during fire. The flames flowing into the panel induce diffusion of fire by rapid burning, causing damage of human life and property. In this research, we developed a flame spread prevention plate to prevent spreading of sandwich panel. This is an improvement of the workability by the anti-spreading construction method of the existing previous research, it can be applied independently to the connecting part where the panel and the panel are coupled, designed to prevent inflow and spreading of flame did. The actual fire test of the test method of KS F ISO 13784-1 of the sandwich panel specimen was conducted and the burning behavior corresponding to the presence or absence of application of the flame spread prevention plate was grasped at the panel connection part and its effect was measured. Inserting a fire spreading plate into the test result panel connecting part is measured by delaying the flashover, prevention of collapse of the specimen, and temperature rise of the opening, effectively improving the fire safety of the panel structure It was confirmed as a method that can be secured. It is judged that panel structure will contribute to ensuring fire safety by applying the fire spread prevention construction method of various methods ensuring the workability and economy of panel connection vulnerable to fire.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.

Effect of Pressure and Stoichiometric Air Ratio on NOx Emissions in Gas-Turbine Dump Combustor with Double Cone Burner (이중원추형 모형연소기에서 압력과 공기비에 따른 NOx 배출특성)

  • Nam, Dong-Hyun;Nam, Hyun-Su;Han, Dong-Sik;Kim, Gyu-Bo;Cho, Seung-Wan;Kim, Han-Suk;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • This work presents an experimental investigation of NOx emissions according to inlet air temperature (550-660 K), stoichiometric air ratio (${\lambda}$, 1.4-2.1), and elevated pressure (2-5 bar) in a High Press Combustor (HPC) equipped with a double cone burner, which was designed by Pusan Clean Coal Center (PC3). The exhaust-gas temperature and NOx emissions were measured at the end of the combustion chamber. The NOx emissions generally decreased as a function of increasing ${\lambda}$. On the other hand, NOx emissions were influenced by ${\lambda}$, inlet air temperature and pressure of the combustion chamber. In particular, when the inlet air temperature increased, the flammability limit was extended to leaner conditions. As a result, a higher adiabatic temperature and lower NOx emissions could be achieved under these operation conditions. The NOx emissions that were governed by thermal NOx were greatly increased under elevated pressures, and slightly increased at sufficiently low fuel concentrations (${\lambda}$ >1.8).

Combustion Characteristics of Hydrogen/Methane gas in Pre-mixed Swirl Flame (메탄/수소 혼합 가스의 예혼합 선회 연소특성)

  • Kim, Han-Seok;Lee, Young-Duk;Choi, Won-Seok;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.276-282
    • /
    • 2008
  • The effects of hydrogen enrichment to methane have been investigated with swirl-stabilized premixed hydrogen-enriched methane flame in a laboratory-scale pre-mixed combustor. The hydrogen-enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of hydrogen addition to the methane fuel and different swirl strengths. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using micro-thermocouple, particle image velocity meter (PIV) and chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in ignition energy from recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The higher combustibility of hydrogen makes reaction faster, raises the temperature of reaction zone and expands the reaction zone, consequently recirculation flow to reaction zone is reduced. The temperature of reaction zone increases with hydrogen addition even though the adiabatic flame temperature of the mixture gas decreases with increase in the amount of hydrogen addition in this experiment condition because the higher combustibility of hydrogen reduces the cooler recirculation flow to the reaction zone.

Experimental and Numerical Studies on the Failure of Curtain Wall Double Glazed for Radiation Effect (커튼월 이중 유리 외장재 파단에 대한 실험 및 수치해석 연구)

  • Nam, Jiwoo;Ryou, Hong-Sun;Kim, Dong-Joon;Kim, Sung-Won;Nam, Jun-Seok;Cho, Seongwook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.40-44
    • /
    • 2015
  • National and international standards for curtain wall glass are focused on wind pressure and insulation performance, but disasters such as fires and earthquakes are not considered. Failure of curtain wall glass during a fire in a skyscraper increases the loss of lives and property due to the spread of fire. Therefore, the fire resistance of curtain wall glass should be investigated, and technology to prevent glass failure should be developed to prevent fire damage due to spreading fire. It is important to predict the starting point of cracks and the cause of glass failure to prevent it effectively using the limited water in a skyscraper. In this study, double glazed glass was exposed to a radiator in an experiment performed to analyze the thermal characteristics. The results show that glass that was not directly exposed to high temperature and pressure was broken. To identify this failure case, numerical analysis was performed. Three glass specimens were installed in an ISO 9705 room and exposed to radiation using a radiator, and a thermocouple was used to measure the temperature on the surface of the glass. Widely used double glazed glass was analyzed for weakness to fire.

Surrogate Models and Genetic Algorithm Application to Approximate Optimization of Discrete Design for A60 Class Deck Penetration Piece (A60 급 갑판 관통 관의 이산설계 근사최적화를 위한 대리모델과 유전자 알고리즘 응용)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.377-386
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistant system installed on a horizontal compartment to prevent flame spreading and protect lives in fire accidents in ships and offshore plants. This study deals with approximate optimization using discrete variables for the fire resistance design of an A60 class deck penetration piece using different surrogate models and a genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class deck penetration piece. For the approximate optimization of the piece, the length, diameter, material type, and insulation density were applied to discrete design variables, and temperature, productivity, and cost constraints were considered. The approximate optimum design problem based on the surrogate models was formulated such that the discrete design variables were determined by minimizing the weight of the piece subjected to the constraints. The surrogate models used in the approximate optimization were the response surface model, Kriging model, and radial basis function-based neural network. The approximate optimization results were compared with the actual analysis results in terms of approximate accuracy. The radial basis function-based neural network showed the most accurate optimum design results for the fire resistance design of the A60 class deck penetration piece.