• 제목/요약/키워드: 단어 중의성

검색결과 121건 처리시간 0.021초

가변 크기 문맥과 거리가중치를 이용한 동형이의어 중의성 해소 (Word sense disambiguation using dynamic sized context and distance weighting)

  • 이현아
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.444-450
    • /
    • 2014
  • 의미 중의성 해소를 위한 대부분의 기존 연구에서는 문장의 특성에 상관없이 고정적인 크기의 문맥을 사용해 왔다. 본 논문에서는 중의성 해소에서 문장에 따라 가변적인 크기의 문맥을 사용하는 가변길이 윈도우와 단어간 거리를 사용한 의미분석 방법을 제안한다. 세종코퍼스의 형태의미분석 말뭉치로 학습하여 12단어 32,735문장에 대해 실험한 결과에서 제안된 방법이 용언에 대하여 92.2%의 평균 정확도를 보여 고정 크기의 문맥을 사용한 경우에 비해 향상된 결과를 보였다.

어휘적 중의성 제거 규칙과 부분 문장 분석을 이용한 한국어 문법 검사기 성능 향상 (Improvement of Korean Grammar Checker Using Partial Parsing based on Dependency Grammar and Disambiguation Rules)

  • 소길자;남현숙;김수남;원상연;권혁철;박동인
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.253-260
    • /
    • 1998
  • 한국어 문서에는 여러 어절을 검증해야만 처리할 수 있는 의미 오류와 문체 오류가 있다. 다수 어절 사이에 있는 오류는 부분 문장 분석을 한다. 논문에서는 의미 오류와 문체 오류를 처리할 때 어휘적 중의성 때문에 생기는 문제점을 제시하고 해결방법을 제안한다. 어휘적 중의성이란 한 단어가 두 가지 이상의 형태소 정보를 가짐을 뜻한다. 철자검사기와는 달리 문법 검사기에서는 어휘적 중의성을 제거하지 않으면 여러 가지 검사 오류가 발생한다. 이 논문에서는 의미, 문체 시스템에서 어휘적 중의성 때문에 검사 오류가 발생할 수 있는 과정을 크게 세 단계로 분류하였다. 연어 오류가 발생할 수 있는 검사단어가 어휘적 중의성을 가지면 표제어가 다른 규칙이 여러 개 존재한다. 이 때 규칙 선택 문제가 생긴다. 중의성 문제는 부분 문장분석 과정에서도 지배소와 의존소 사이의 의존관계를 정확하게 설정하기 어렵게 한다. 본 논문에서는 각 단계에서 발생한 문제를 최소화하여 문법 검사기의 성능을 향상시킨다.

  • PDF

주제어의 중의성 해소를 위한 Naive Bayes 분류기 적용에 관한 연구 (Application of a Naive Bayes Classifier for Topic Word Sense Disambiguation)

  • 유현숙;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2000년도 제7회 학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2000
  • 단어의 의미 중의성을 해소하는 것은 자연언어처리의 중요한 문제 중의 하나이다. 특히 문서의 주제어가 중의성을 가질 때, 이 문서는 부적합한 범주에 속하게 되어 정보검색시 잡음을 일으키는 원인이 되기도 한다. 그러므로, 본 논문에서는 문서를 대표하는 주재어의 의미 중의성을 해소하기 위해 주변 문맥자질을 고려하는 방법을 모색한다 이를 위해 자연언어처리의 통계적 방법으로 문서 범주화에 많이 사용되는 Naive Bayes 분류기를 중의성 해소에 적용하고, 그 결과 얻어진 중의성 해소 성능을 평가한다.

  • PDF

국소 문맥과 공기 정보를 이용한 비교사 학습 방식의 명사 의미 중의성 해소 (Unsupervised Noun Sense Disambiguation using Local Context and Co-occurrence)

  • 이승우;이근배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권7호
    • /
    • pp.769-783
    • /
    • 2000
  • 본 논문에서는 한국어 명사의 중의성 해소를 위해, 원시 말뭉치로부터 얻을 수 있는 지식원으로서 국소문맥을 정의하고 추출하는 방법을 제시한다. 동일한 국소 문맥을 갖는 서로 다른 명사는 그 의미가 유사하다는 직관을 바탕으로 대상 명사의 중의성 해소를 위해 대상명사를 포함하는 국소문맥과 동일한 국소문맥을 갖는 단어를 단서로 사용함으로써 학습 자료의 활용도를 높일 수 있고 빈도수가 적은 단어의 의미 중의성도 해결할 수 있으며, 용언의 확장을 통해 자료 부족 현상을 줄일 수 있다. 대상 명사는 동일한 국소문맥에 의한 단서들과의 최대 유사도 계산을 통해 그 의미가 결정된다. 두 단어간의 유사도는 WordNet으로부터 차용한 의미 계층 구조에서 두 단어가 가지는 개념 사이의 거리에 의해 계산된다. 최대 유사도를 계산하는 과정에서는 단서들의 중의성을 점차 줄여 나감으로써 유사도 계산의 속도를 향상시킬 수 있다. 대상 명사가 둘 이상의 국소문맥을 가질 때에는 각 국소문맥의 종류에 따른 가중치를 부여하여 국소문맥의 종류에 따른 의미제약의 차이를 구현하였다. 또 하나의 지식원으로서 사전 정의와 예문으로부터 공기정보를 얻고, 이를 국소문맥을 보완하기 위한 지식으로 사용하여 최선의 의미를 선택할 수 있도록 하였다. 실험을 통해, 제안하는 방법은 국소 문맥의 적용률이 높고, 공기 정보는 국소 문맥과 상호 보완적으로 사용되어 정확도를 높일 수 있음을 보였다. 본 방법을 실험한 결과, 사용된 단어의 의미 중의성이 크면서도, 기존의 의미 부착 말뭉치를 이용한 교사 학습 방식의 성능보다도 높은 정확도(89.8%)를 얻을 수 있었다.

  • PDF

의미 분석을 위한 말뭉치 기반의 온톨로지 학습 (Corpus-Based Ontology Learning for Semantic Analysis)

  • 강신재
    • 한국산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.17-23
    • /
    • 2004
  • 본 논문은 한국어정보처리에서 단어의 의미를 결정하기 위한 말뭉치 기반의 온톨로지 학습 방법을 제시하고 있다. 먼저 이미 확보된 전자사전의 정보를 이용하여 단어의 확실한 의미를 우선 결정한 후, 아직 결정하지 못한 단어의 의미는 온톨로지를 이용하여 최종 결정하는 절차를 거친다. 온톨로지를 단어 의미 중의성 해소를 위한 지식베이스로 사용하기 위해서는, 온톨로지 내 개념들간의 상호정보가 말뭉치의 통계 정보에 근거하여 미리 계산된다. 계산된 상호정보 값을 가중치로 간주하면 온톨로지는 가중치 그래프로 생각할 수 있으므로, 개념간 최소 경로를 통하여 개념간 연관도를 알아 볼 수 있다. 실제 기계번역 시스템에서 본 방법은 온톨로지를 사용하지 않은 방법보다 9%의 성능 향상을 가져오는 결과를 얻을 수 있었다.

  • PDF

사전 기반 자질과 동적 마스킹을 이용한 ELECTRA 기반 개체명 인식 (Named Entity Recognition based on ELECTRA with Dictionary Features and Dynamic Masking)

  • 김정욱;황태선;김봉수;이새벽
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.509-513
    • /
    • 2021
  • 개체명 인식이란, 문장에서 인명, 지명, 기관명, 날짜, 시간 등의 고유한 의미의 단어를 찾아서 미리 정의된 레이블로 부착하는 것이다. 일부 단어는 문맥에 따라서 인명 혹은 기관 등 다양한 개체명을 가질 수 있다. 이로 인해, 개체명에 대한 중의성을 가지고 있는 단어는 개체명 인식 성능에 영향을 준다. 본 논문에서는 개체명에 대한 중의성을 최소화하기 위해 사전을 구축하여 ELECTRA 기반 모델에 적용하는 학습 방법을 제안한다. 또한, 개체명 인식 데이터의 일반화를 개선시키기 위해 동적 마스킹을 이용한 데이터 증강 기법을 적용하여 실험하였다. 실험 결과, 사전 기반 모델에서 92.81 %로 성능을 보였고 데이터 증강 기법을 적용한 모델은 93.17 %로 높은 성능을 보였다. 사전 기반 모델에서 추가적으로 데이터 증강 기법을 적용한 모델은 92.97 %의 성능을 보였다.

  • PDF

협력적 필터링을 위해 연관 단어 빈도를 이용한 웹 문서 분류 (Classification of Web Documents Using Associative Word Frequency for Collaborative Filtering)

  • 하원식;정경용;정헌만;류중경;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.160-162
    • /
    • 2004
  • 기존의 웹 문서 분류 시스템서는 많은 시간과 노력을 요구하며, 연관 단어가 아닌 단일 단어만으로 웹 문서들을 분류하여 단어의 중의성을 반영하지 못해 많은 오분류가 있었다. 이러한 문제점을 해결하기 위해 본 논문에서는 협력적 필터링을 위한 연관 단어 빈도를 사용한 웹 문서 분류 방법을 제안한다. 제안된 방법에서는 웹 문서 내에서 단어들을 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘에 의해 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 반영한다. 수정된 신뢰도를 ARHP 알고리즘에 적용하여 연관 단어들 사이의 유사정도를 계산하고 유사 클래스를 구성한다 생성된 유사 클래스들을 기반으로 웹 문서를 $\alpha$-cut을 이용하여 분류한다 성능평가를 위해 기존의 문서 분류 방법들과 비교 평가를 하였다.

  • PDF

모듈화된 신경망을 이용한 한국어 중의성 해결 시스템 (Word sense disambiguation using modular neural networks)

  • 한태식;송만석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.39-42
    • /
    • 1995
  • 문장 안에서 한 단어가 가지는 올바른 의미를 얻기 위해 모듈화된 신경망을 이용하였다. 앞부분에 놓인 신경망은 코호넨 신경망으로 사용자의 지도가 개입되지 않은 상태로 자율학습(Unsupervised learning)이 이루어지고, 뒤에 놓인 신경망은 앞에서 결과로 얻은 2차원의 자기 조직화 형상지도(Self-organizing feature map)를 바탕으로 역전파 신경망을 이용한 지도학습(Supervised learning)을 하게 하였다. 입력 자료는 구문분석된 문장의 조사 정보를 활용하여 입력 위치를 정해준 명사의 의미표지와 동사의 의미표지를 사용하였다. 중의성이 있는 단어를 가지는 문장은 중의성의 가지수 만큼 테스트 입력 자료가 되어 신경망을 통과하여 의미를 결정하도록 한다.

  • PDF

한국어 텍스트의 개체 URI 탐지: 품사 태깅 독립적 개체명 인식과 중의성 해소 (A Non-morphological Approach for DBpedia URI Spotting within Korean Text)

  • 김영식;함영균;김지성;황도삼;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.100-106
    • /
    • 2014
  • URI spotting (탐지) 문제는 텍스트에 있는 단어열 중에서 URI로 대표되는 개체(entity)에 해당되는 것을 탐지하는 것이다. 이 문제는 두 개의 작은 문제를 순차적으로 해결하는 과제이다. 즉, 첫째는 어느 단어열이 URI에 해당하는 개체인가를 인식하는 것이고, 둘째는 개체 중의성 해소 문제로서 파악된 개체가 복수의 URI에 해당할 수 있는 의미적 모호성이 있을 때 그 URI중 하나를 선택하여 모호성을 해소하는 것이다. 이 논문은 디비피디아 URI를 대상으로 한다. URI 탐지 문제는 개체명 인식 문제와 비슷하나, URI(예를 들어 디비피디아 URI, 즉 Wikipedia 등재어)에 매핑될 수 있는 개체로 한정되므로 일반적인 개체명 인식 문제에서 단어열의 품사열이 기계학습의 자질로 들어가는 방법론과는 다른 자질을 사용할 수 있다. 이 논문에서는 한국어 텍스트를 대상으로 한국어 디비피디아 URI 탐지문제로서 SVM을 이용한 개체경계 인식 방법을 제시하여, 일반적 개체명 인식에서 나타나는 품사태거의 오류파급효과를 없애고자 한다. 또한 개체중의성 해소 문제는 의미모호성이 주변 문장들의 토픽에 따라 달라지므로, LDA를 활용하며 이를 영어 디비피디아 URI탐지에서 쓰인 방법들과 비교한다.

  • PDF

정보량과 개념적 밀도를 이용한 단어 의미 중의성 해결 (Word Sense Disambiguation using the Information Content and the Conceptual Density)

  • 조미영;김판구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.445-448
    • /
    • 2005
  • 기존의 정보 검색은 단순 키워드 매칭에 의한 패턴 매칭으로 의미적 정보 검색에는 한계가 있다. 이를 해결하기 위한 많은 연구가 이루어졌으나 질의 혹은 문서에 중의적 의미를 가진 단어를 포함하고 있는 경우에 검색시 문제가 되었다. 이에 본 논문에서는 WordNet기반의 단어 빈도수를 고려한 정보량과 단어 영역내 존재하는 노드 수를 고려한 개념적 밀도를 이용한 WSD(Word Sense Disambiguation)를 제안한다. SemCor를 이용하여 테스트한 결과 두 요소를 결합한 방법에 의해 WSD가 약 20% 향상되었다.

  • PDF