• Title/Summary/Keyword: 단어 의미 표현

Search Result 208, Processing Time 0.033 seconds

단위 취약점 식별자 부여 자동화에 대한 연구 (A study on automation of AV(Atomic Vulnerability) ID assignment)

  • 김형종
    • 인터넷정보학회논문지
    • /
    • 제9권6호
    • /
    • pp.49-62
    • /
    • 2008
  • 단위 취약점(atomic vulnerability)은 기존의 취약점의 표현방법이 갖는 모호성을 개선하여, 취약점을 시스템적으로 표현하기 위한 취약점의 새로운 정의이다. 단위 취약점은 취약점의 유형, 위치, 결과 등에 따라 보다 세분화하여, 취약점을 의미를 중심으로 분석하고 자 할 때 필요한 정보로서, 기존의 취약점은 몇 개의 단위 취약점 식별자의 조합으로 표현된다. 현재 가장 대표적으로 사용되는 취약점 정보인 CW(Common Vulnerability Exposure)의 경우, 취약점의 핵심적인 내용을 자연어 형태의 설명(description)을 통해 제시한다. 이러한 CVE의 설명 정보는, 정형화되어 있지 않아서 단위 취약점 분석을 위해서는 기존의 CVE 설명 정보에서 특정 단어들을 검색하여 데이터를 분류하는 자연어 검색 및 판단 기법이 필요하다. 본 논문에서는 자연어 검색 기법을 이용하여 단위 취약점 분석에 활용할 수 있는 소프트웨어를 설계하고 이를 실제 구현한 결과를 소개하고자 한다. 본 연구의 기여점은 설명위주의 취약점 표현을 정형화된 형태로 변환해 주는 소프트웨어 시스템의 개발에 있다.

  • PDF

기계가독형사전에서 상위어 판별을 위한 규칙 학습 (Learning Rules for Identifying Hypernyms in Machine Readable Dictionaries)

  • 최선화;박혁로
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.171-178
    • /
    • 2006
  • 기계가독형사전(Machine Readable Dictionary)에서 단어의 정의문에 나타나는 항목 단어의 상위개념을 추출하는 대부분의 연구들은 전문가에 의해 작성된 어휘패턴을 사용하였다. 이 방법은 사람이 직접 패턴을 수집하므로 시간과 비용이 많이 소모될 뿐만 아니라, 자연언어에는 같은 의미를 가진 다앙한 표현들이 존재하므로 넓은 커버리지를 갖는 어휘패턴들을 수집하는 것이 매우 어렵다는 단점이 있다. 이런 문제점들을 해결하기 위하여, 본 논문에서는 구문적 특징만을 이용한 상위어 판별 규칙을 기계학습함으로써 기존에 사용되었던 어휘패턴의 지나친 어휘 의존성으로 인한 낮은 커버리지 및 패턴 수집의 문제를 해결하는 방법을 제안한다. 제안한 방법으로 기계학습된 규칙들을 상위어 자동추출과정에적용한 결과 정확도 92.37% 성능을 보였다. 이는 기존 연구들보다 향상된 성능으로 기계학습에 의해 수집된 판별규칙이 상위어 판별에 있어서 어휘패턴의 문제를 해결할 수 있다는 것을 입증하였다.

문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안 (Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity)

  • 이민석;양석우;이홍주
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.105-122
    • /
    • 2019
  • 텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.

웹 크롤링에 의한 네이버 뉴스에서의 한국농수산대학 - 키워드 분석과 의미연결망분석 - (Korea National College of Agriculture and Fisheries in Naver News by Web Crolling : Based on Keyword Analysis and Semantic Network Analysis)

  • 주진수;이소영;김승희;박노복
    • 현장농수산연구지
    • /
    • 제23권2호
    • /
    • pp.71-86
    • /
    • 2021
  • 빅데이터 분석기술인 웹 크롤링 기술을 이용하여 네이버 뉴스 데이터 내에 담겨 있는 '한농대' 에 대한 이미지 단어를 추출하였다. 뉴스 기사에서 언급된 빈도에 따라 중요한 단어로 평가는 단어빈도 분석에서는 청년농업인을 육성하는 한농대의 특성을 잘 설명하는 '농업', '교육', '지원', '농업인', '청년', '대학', '사업', '농촌', '대표' 등의 단어가 자주 사용되는 것으로 나타났다. 또한 '디지털', '스마트', '드론', '졸업생', '창업', '새만금', '교육과정' 등 디지털 농업 전문 인재를 육성하기 위한 학교의 교육, 지원, 비전 등과 관련한 단어들이 추출되었다. 모든 기사 데이터의 단어 빈도(TF) 및 역 문서 빈도(IDF)를 이용한 TF-IDF 가중치의 전체 순위는 '농업인', '드론', '농림축산식품부', '전북', '청년농업인', '농업', '전주', '대학', '장치', '파종' 등의 단어가 한농대와 관련된 뉴스 기사에서 중요한 핵심어 역할을 하는 것으로 나타났다. 단어 빈도에서 '드론', '농림축산식품부', '전북', '청년농업인', '전주', '장치, '파종' 등은 순위가 매우 낮았으나 TF-IDF 가중치 순위에서는 한농대를 표현하는 핵심어로 나타났다. TF-IDF 평가에서 '교육', '지원', '청년', '사업', '농촌' 등의 키워드는 단어빈도가 높으면서 많은 문서에서 자주 등장하는 키워드로서 핵심어 역할은 크지 않은 것으로 나타났다. 단어 간 연계성을 파악하기 위한 의미연결망 분석에서 추출한 바이그램은 '청년'-'농업인', '디지털'-'농업', '영농'-'정착', '농업'-'농촌', '디지털'-'전환' 등의 순으로 빈도가 높게 나타났다. 중심성 지표로 키워드의 영향력을 평가한 결과 모든 지표에서 '농업'이 1위로 나타났으며, 2위에는 '농업인'(근접 중심성, 매개 중심성), '교육'(연결 중심성, 페이지랭크 중심성) 및 '미래'(고유벡터 중심성)으로 나타났다. 스피어먼 순위 상관계수에 의한 중심성 지표별 키워드의 순위의 유사성은 연결 중심성과 페이지랭크 중심성이 0.89 전후의 가장 높은 상관관계를 보였다. 이상으로 네이버 뉴스의 한농대 관련 기사에서 단어 빈도로 보면 '농업', '교육', '지원', '농업인', '청년', '대학', '사업', '농촌', '대표' 등이 중요한 단어로 평가되었으나, 문서빈도를 함께 고려한 평가에서는 '농업인', '드론', '농림축산식품부', '전북', '청년농업인', '농업', '전주', '대학', '장치', '파종' 등의 단어가 핵심어 역할을 하는 것으로 나타났다. 한편 단어나 문서의 빈도가 아니라 단어 간 네트워크 연계성을 고려한 중심성 분석에서는 연결 중심성과 페이지랭크 중심성에 의한 평가가 적합한 것으로 나타났으며, '농업', '교육', '미래', '농업인', '디지털', '지원', '활용' 등이 중심성이 강한 단어로 나타났다.

술어기반 문형정보를 이용한 자동요약시스템에 관한 연구 (A Study on an Automatic Summarization System Using Verb-Based Sentence Patterns)

  • 최인숙;정영미
    • 정보관리학회지
    • /
    • 제18권4호
    • /
    • pp.37-55
    • /
    • 2001
  • 본 연구에서는 특정 주제분야의 텍스트를 대표할 수 있는 단어술어를 추출하고 기본문형을 형성 한 후 각 단서술어의 기본문형을 실례화하여 연결함으로써 요약문을 작성하는 자동요약시스템의 모형을 설계하고 구현하였다. 시스템은 학습과정과 요약과정을 구분되며, 학습과정에서는 술어와 격조사를 출현빈도를 이용하여 주제분야 텍스트집단을 대표하는 단어술어와 필수격 조사를 추출한 뒤 단어술어가 이루는 문장의 기본문형을 형성한다. 요약과정에서 실례화 규직을 요약 대상 문장의 구문 분석 결과에 적용하여 기본문형의 격조사와 결합될 논항을 찾아 단문을 생성하고 연결하여 요약문을 완성한다. ‘화재’및‘강도’와 관련된 신문기사를 대상으로 실험을 수행하였으며, 작성된 요약문은 단어술어가 포함된 주요 문장에서 추출한 필수 정보항목과 술어를 중심으로 생성된 문장들로서 문장간의 연결이 자연스러울 뿐 아니라 텍스트의 전체적인 의미를 표현할 수 있었다. 또한, 통계적 기법을 이용한 학습을 통해 주제영역의 확장이 가능하였다.

  • PDF

계산주의적 시각단어재인 모델에서의 시각이웃과 음운이웃 효과 (Visual and Phonological Neighborhood Effects in Computational Visual Word Recognition Model)

  • 임희석;박기남;남기춘
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.803-809
    • /
    • 2007
  • 본 논문은 인간의 언어정보처리 과정 중 시각단어재인(visual word recognition) 과정에서 음운정보(phonological information)와 철자정보(orthography information)의 역할 및 심성어휘집의 표상(representation) 형태를 알아보기 위해 신경망(neural network)을 이용한 계산주의적 모델(computational model)을 제안한다. 제안하는 모델은 한국어 2음절을 입력 값으로 사용하는 입력층(input layer), 은닉층(hidden layer) 그리고 의미를 표현하는 출력층(output layer)으로 구성된 전방향 신경회로망(feed forward network) 구조로 설계하였다. 실험결과 계산주의적 모델은 한국어에 대한 시각 단어재인 시 보이는 언어현상 중 음운, 철자 이웃 크기효과(phonological and orthographic neighborhood effect)를 나타냈으며, 이를 통해 한국어 시각단어재인 과정에서 심성어휘집이 음운정보로 표상되어 있음을 시사하는 증거를 보였다.

  • PDF

제4기과학 한글원고 바로 쓰기 (Writing a Good Scientific Manuscript in Korean on the Quaternary Sciences)

  • 장순근
    • 한국제4기학회지
    • /
    • 제14권1호
    • /
    • pp.73-86
    • /
    • 2000
  • 1999년 11월 공주대학교에서 열렸던 한국 제4기학회 제 26차 학술발표대회에 발표되었던 요약문과 논문들이 한글로 잘 쓰였는가 하는 점에 관심을 두고 훑어보았다. 원고 문장에는 일본말법 표현과 한문이나 영어 같은 외국 단어들과 외국 표현들과 너무 긴 문장들이 간간이 보인다. 또한 의미가 전달되지 않는 문장, 한자를 쓴 어려운 표현, 정확하지 않은 시제와 어법 따위들이 포함돼 있다. 좋은 한글원고를 쓰는 방법으로 교양과학책 독서와 한글 작문 연습을 제안한다. 한글작문연습에는 저자들이 시간 여유를 가지고 쓰고, 동료와 논의하고, 비판을 받아들일 마음을 연 자세들이 포함된다. 편집진들도 원고를 인쇄하기 전에 점검해야 한다.

  • PDF

Continual learning을 이용한 한국어 상호참조해결의 도메인 적응 (Domain adaptation of Korean coreference resolution using continual learning)

  • 최요한;조경빈;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.320-323
    • /
    • 2022
  • 상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.

  • PDF

복합 문서의 의미적 분해를 통한 다중 벡터 문서 임베딩 방법론 (Multi-Vector Document Embedding Using Semantic Decomposition of Complex Documents)

  • 박종인;김남규
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.19-41
    • /
    • 2019
  • 텍스트 데이터에 대한 다양한 분석을 위해 최근 비정형 텍스트 데이터를 구조화하는 방안에 대한 연구가 활발하게 이루어지고 있다. doc2Vec으로 대표되는 기존 문서 임베딩 방법은 문서가 포함한 모든 단어를 사용하여 벡터를 만들기 때문에, 문서 벡터가 핵심 단어뿐 아니라 주변 단어의 영향도 함께 받는다는 한계가 있다. 또한 기존 문서 임베딩 방법은 하나의 문서가 하나의 벡터로 표현되기 때문에, 다양한 주제를 복합적으로 갖는 복합 문서를 정확하게 사상하기 어렵다는 한계를 갖는다. 본 논문에서는 기존의 문서 임베딩이 갖는 이러한 두 가지 한계를 극복하기 위해 다중 벡터 문서 임베딩 방법론을 새롭게 제안한다. 구체적으로 제안 방법론은 전체 단어가 아닌 핵심 단어만 이용하여 문서를 벡터화하고, 문서가 포함하는 다양한 주제를 분해하여 하나의 문서를 여러 벡터의 집합으로 표현한다. KISS에서 수집한 총 3,147개의 논문에 대한 실험을 통해 복합 문서를 단일 벡터로 표현하는 경우의 벡터 왜곡 현상을 확인하였으며, 복합 문서를 의미적으로 분해하여 다중 벡터로 나타내는 제안 방법론에 의해 이러한 왜곡 현상을 보정하고 각 문서를 더욱 정확하게 임베딩할 수 있음을 확인하였다.

의미적 시각미디어 웹 서비스를 위한 온톨로지 반자동 생성 (Semiautomatic Ontology Construction for Semantic Visual Media Web Service)

  • 김하영;이충우;황재일;서보원;나연묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.12-16
    • /
    • 2007
  • 웹 서비스는 사용자의 요청에 적합한 서비스 제공자의 정보를 제공하여 주는 시스템으로 사용자는 원하는 서비스를 웹 서비스에서 검색, 통합하는 등으로 새로운 서비스를 조합할 수 있다. 이러한 웹 서비스는 다양한 형태의 검색자원을 가질 수 있는데 HERMES는 웹 서비스 시각미디어 검색 시스템의 일종이다. 오늘날의 웹 서비스는 시맨틱 개념을 접목시켜 검색 성능을 향상시키고 정확성을 증대시키기 위해 온톨로지를 주로 활용한다. 시맨틱 개념의 핵심기술인 온톨로지는 단어와 관계들로 구성된 사전으로서 어느 특정분야에 관련된 단어들을 계층적 구조로 표현한 것이다. 본 논문은 온톨로지의 반자동 생성을 위해 Mining Extractor를 구축하여 HERMES를 개선하는 방법을 제안한다. Mining Extractor는 대상 도메인을 필터링하고 도메인간의 계층구조를 파악하여 온톨로지를 구축하는 것을 목적으로 한다. 이를 위해 워드넷(WordNet)과 데이터 마이닝 기법의 연관규칙을 적용하였다.

  • PDF