증상 진단 시스템이라 함은 환자가 자신의 증상을 설명하고, 한의사가 증상에 맞는 질병 진단을 내리는 것을 말한다. 증상 진단 시스템을 자동화하기 위해서는 환자의 자연어로 이루어진 증상 설명에 대한 분석이 필요하다. 이에 본 논문에서는 증상 설명에 대하여 형태소 분석을 수행하고 한의학 병증 데이터와 비교하여 적합한 진단을 내리도록 증상 진단 시스템을 개발하였다. 증상 진단 검색의 효율을 높이기 위해서 Document형 NoSQL인 MongoDB를 이용하여 각각의 병증 데이터를 하나의 도큐먼트로 하고, 그 안의 필드값을 유연하게 관리할 수 있도록 데이터베이스를 구축하였다. 또한, 진단의 근거가 되는 한의사의 병증 설명과 환자의 증상 설명에서 사용되는 용어의 차이를 줄일 수 있도록 환자의 증상 설명을 축적하고 정제하여 일반인에게 친숙한 단어로 구성된 설명데이터를 제공할 수 있게 하였다.
본 논문은 사용자가 웹 검색을 위해 입력한 키워드와 그 키워드에 의해서 접근한 웹문서의 URL을 이용하여 연관키워드(relevant keyword)를 수집하는데 목적이 있다. 서로 다른 키워드들이라 할지라도 각각의 키워드들이 동일하게 링크된 URL의 수가 많다면, 그 키워드들은 서로 관련성이 높을 것이라는 것이 본 논문의 주된 가정이다. 실제로 이를 검증하기 위해 사용자가 입력한 키워드와 이 키워드를 이용하여 접근한 URL의 정보가 담겨있는 포털사이트의 클릭로그 데이터를 이용하여 URL과 키워드들의 쌍을 추출한 후, 연관키워드 집합을 생성하였다. 그 결과, 실험에서는 최소지지도(minimum support)가 10일 때, 유사어휘 수준에서의 정확도는 89.32%를 보였으며, 유사 어휘는 아니나 관련성이 있는 어휘 수준에서는 99.03%의 정확도를 보였다. 본 논문에서 제안하는 접근 방법은 언어에 독립적이고, 실세계의 데이터로부터 관련성이 있는 단어를 수집할 수 있다는 장점이 있다.
인터넷과 스마트폰의 발달로 디지털 음원은 쉽게 접근이 가능해졌고 이에 따라 음악 검색 및 추천에 대한 관심이 높아지고 있다. 음악 추천 방법으로는 장르나 감정을 분류하기 위해 음정, 템포, 박자 등의 멜로디를 사용한 연구가 진행되고 있다. 하지만 음악에서 가사는 인간의 감정을 표현하는 수단 중의 하나로 역할 비중이 점점 높아지고 있기 때문에 가사를 기반으로 한 감정 분류 연구가 필요하다. 이에 본 논문에서는 가사를 기반으로 이별 감정을 세분화하기 위해 이별 가사의 감정을 분석한다. 이별 가사에 나타나는 단어 간 유사도를 Word2Vec 학습을 통해 벡터화하여 감정 사전을 구축 한 후 LSTM을 활용하여 가사를 학습시켜 유사한 감정으로 가사를 분류해주는 Word2Vec과 LSTM을 활용한 이별 가사 감정 분류 방법을 제안한다.
본 연구의 목적은 국내 학술논문 데이터베이스에서 검색한 언어 네트워크 분석 관련 53편의 국내 학술논문들을 대상으로 하는 내용분석을 통해, 언어 네트워크 분석 방법의 기초적인 체계를 파악하기 위한 것이다. 내용분석의 범주는 분석대상의 언어 텍스트 유형, 키워드 선정 방법, 동시출현관계의 파악 방법, 네트워크의 구성 방법, 네트워크 분석도구와 분석지표의 유형이다. 분석결과로 나타난 주요 특성은 다음과 같다. 첫째, 학술논문과 인터뷰 자료를 분석대상의 언어 텍스트로 많이 사용하고 있다. 둘째, 키워드는 주로 텍스트의 본문에서 추출한 단어의 출현빈도를 사용하여 선정하고 있다. 셋째, 키워드 간 관계의 파악은 거의 동시출현빈도를 사용하고 있다. 넷째, 언어 네트워크는 단수의 네트워크보다 복수의 네트워크를 구성하고 있다. 다섯째, 네트워크 분석을 위해 NetMiner, UCINET/NetDraw, NodeXL, Pajek 등을 사용하고 있다. 여섯째, 밀도, 중심성, 하위 네트워크 등 다양한 분석지표들을 사용하고 있다. 이러한 특성들은 언어 네트워크 분석 방법의 기초적인 체계를 구성하는 데 활용할 수 있을 것이다.
암묵인용문 인식은 학술문헌의 본문 텍스트 내에서 명시적 인용표지가 누락된 인용문장을 자동 인식하는 것으로 인용 기반 논문 검색 및 요약의 핵심 기술이다. 기존 암묵인용문 인식의 최신 연구들은 단어 ngram, 단서어구, 명시인용문과의 거리, 기존 연구자의 성, 기존 방법의 명칭 등 다양한 자질을 활용하여 50% 이상 인식 수준을 보고하고 있다. 그러나 대부분의 기존 연구들은 영어에 대해 수행되었으며 한국어의 경우 최근 긍정/부정 단서어구 패턴을 활용한 규칙 기반 시도에서 42% 성능 수준이 보고되어 있어 추가 성능 향상이 요구되는 상황이다. 이 연구에서는 한국어 어휘 자질을 사용하여 한국어 암묵인용문의 기계학습 기반 인식을 시도하였다. 이를 위해 어절, 형태소, 음절 단위에 기반한 다양한 크기의 어휘 ngram 자질들의 인식 성능을 비교 평가하고 한국어 암묵인용문 인식에 적합한 어휘 자질로 형태소 1gram 및 음절 2gram 단위를 결정하였다. 또한 이들 어휘 자질들을 전후 명시인용문들과의 인접성을 표현한 위치 자질들과 결합하여 한국어 암묵인용문 인식 성능을 50% 이상 수준으로 대폭 향상시켰다.
본 논문은 다양한 정보 처리 기법 중 감성어휘를 이용한 정보 처리 기법에 대해 논하고자 한다. 현재 웹상에서 서비스 하고 있는 음악 추천서비스는 음악을 음정, 선율, 분위기, 장르 등으로 구분하고 추천해 주기 때문에 같은 장르의 비슷한 느낌을 가진 노래만을 추천함으로 사용자로 하여금 지루함을 느끼게 한다는 단점이 있다. 본 논문에서 제안하는 감성어휘를 이용한 음악 추천서비스는 이러한 단점을 극복하고자 인간의 감성을 표현해 줄 수 있는 감성어휘를 이용해, 노래가사 내에서 단어를 검색해 사용자의 현재 상태에 적합한 노래와 노래가사를 추천해주는 서비스이다. 본문에서 제안하고자 하는 음악 추천서비스에서 사용자의 현재 감성 상태에 대한 입력은 7가지의 대표감성으로 받게 된다. 사용자의 감성을 입력 받으면 감성에 적합한 감성어휘를 노래가사와 매치 시켜 추천 해줄 노래가사의 우선순위를 정해 사용자에게 노래와 노래가사를 함께 추천한다.
본 논문에서는 질의응답시스템의 성능을 개선하기 위해 문장의 위치정보와 질의형태분류기를 사용하여 질의에 대한 대답순위를 조정하는 새로운 질의-문서 유사도 계산을 제안한다. 이를 위해 첫째로 문서내용을 표현하고 문서의 위치정보를 반영하기 위해 개념그래프를 사용한다. 이 방법은 문서비교에 대표적으로 사용되는 Dice-Coefficient에 기반하고 문장에서 단어의 위치정보론 반영한 유사도 계산이다. 두번째로 질의응답시스템의 대답순위를 개선하기 위하여 질의형태를 고려한 기계학습을 통한 질문에 대한 분류를 하였으며 이를 위해서 뉴스그룹의 FAQ 문서 30,000개를 가지고 기계학습 방법인 나이브 베이지안을 사용한 분류기를 구현하였다. 이에 대한 평가를 위해 세계적인 정보검색대회인 TREC-9의 질의응답시스템분야에 제출된 데이타를 가지고 실험하였으며 기존의 방법에 비해 자동학습기법을 사용하였음에도 평균상호순위가 0.29, 상위 5위에 정답을 포함시킨 경우가 55.1%의 성능을 보였다. 이 방법은 다른 시스템과 달리 질의형태분류를 기계학습 방법을 사용하여 자동으로 학습하는 것에 의의를 갖는다.
컴퓨터 기술의 발전으로 힘입어 수많은 논문이 출판되고 있으며, 새로운 분야들도 계속 생기면서 사용자들은 방대한 논문들 중 자신이 필요로 하는 논문을 검색하거나 분류하기에 많은 어려움을 겪고 있다. 사용자의 이러한 어려움을 완화하기 위해 본 논문에서는 유사 내용의 논문을 분류하고 이를 군집화하는 방법을 제한한다. 본 논문의 제안 방법은 TF-IDF를 이용하여 각 논문의 초록으로부터 주요 주제어를 추출하고, K-평균 클러스터링 알고리즘을 이용하여 추출한 TF-IDF 값을 근거로 논문들을 유사 내용의 논문으로 군집화한다. 제안 방법의 실효성을 검증하기 위해 실제 데이터인 FGCS 저널의 논문 데이터를 사용하였으며, 엘보우 기법을 적용하여 클러스터 개수를 도출하고 실루엣 기법을 이용하여 클러스터링 성능을 검증하였다.
This study aimed to analyze the research trends of the abstract data of ergonomic studies registered in MEDLINE, a medical bibliographic database, using word embedding. Medical-related ergonomic studies mainly focus on work-related musculoskeletal disorders, and there are no studies on the analysis of words as data using natural language processing techniques, such as word embedding. In this study, the abstract data of ergonomic studies were extracted with a program written with selenium and BeutifulSoup modules using python. The word embedding of the abstract data was performed using the word2vec model, after which the data found in the abstract were vectorized. The vectorized data were visualized in two dimensions using t-Distributed Stochastic Neighbor Embedding (t-SNE). The word "ergonomics" and ten of the most frequently used words in the abstract were selected as keywords. The results revealed that the most frequently used words in the abstract of ergonomics studies include "use", "work", and "task". In addition, the t-SNE technique revealed that words, such as "workplace", "design", and "engineering," exhibited the highest relevance to ergonomics. The keywords observed in the abstract of ergonomic studies using t-SNE were classified into four groups. Ergonomics studies registered with MEDLINE have investigated the risk factors associated with workers performing an operation or task using tools, and in this study, ergonomics studies were identified by the relationship between keywords using word embedding. The results of this study will provide useful and diverse insights on future research direction on ergonomic studies.
최근 널리 이용되고 있는 동영상 공유 서비스에서는 콘텐츠 추천 시스템이 매우 중요한 요소이다. 콘텐츠 추천을 위해서 일반적으로 사용자 선호도와 동영상(아이템) 유사도를 동시에 고려하는 협업 필터링을 사용하고 있다. 그러한 서비스는 주로 사용자의 검색 키워드와 시청시간과 같은 개인 선호도를 활용하여 사용자의 편의를 도모한다. 또한 동영상에 지정한 키워드를 중심으로 랭킹화한다. 그러나 한정된 키워드만을 이용한 동영상 유사도를 분석한다는 한계가 있다. 이런 경우 지정한 키워드가 아이템을 제대로 반영하지 못하는 경우 그 문제가 심각해진다. 이 논문에서는 교육 동영상으로부터 차별화된 의미를 갖는 모든 단어를 고려하여 유사도를 분석하며, 이런 경우 데이터와 연산의 규모가 방대하기 때문에 빅데이터 클러스터에서 처리하는 방법을 적용한다. 제안한 시스템은 빅데이터 영상 분석을 통해 동영상 공유 서비스 플랫폼의 기본 모듈로 활용될 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.