Abstract
With the development of the Internet and smartphones, digital sound sources are easily accessible, and accordingly, interest in music search and recommendation is increasing. As a method of recommending music, research using melodies such as pitch, tempo, and beat to classify genres or emotions is being conducted. However, since lyrics are becoming one of the means of expressing human emotions in music, the role of the lyrics is increasing, so a study of emotion classification based on lyrics is needed. Therefore, in this thesis, we analyze the emotions of the farewell lyrics in order to subdivide the farewell emotions based on the lyrics. After constructing an emotion dictionary by vectoriziong the similarity between words appearing in the parting lyrics through Word2Vec learning, we propose a method of classifying parting lyrics emotions using Word2Vec and LSTM, which classify lyrics by similar emotions by learning lyrics using LSTM.
인터넷과 스마트폰의 발달로 디지털 음원은 쉽게 접근이 가능해졌고 이에 따라 음악 검색 및 추천에 대한 관심이 높아지고 있다. 음악 추천 방법으로는 장르나 감정을 분류하기 위해 음정, 템포, 박자 등의 멜로디를 사용한 연구가 진행되고 있다. 하지만 음악에서 가사는 인간의 감정을 표현하는 수단 중의 하나로 역할 비중이 점점 높아지고 있기 때문에 가사를 기반으로 한 감정 분류 연구가 필요하다. 이에 본 논문에서는 가사를 기반으로 이별 감정을 세분화하기 위해 이별 가사의 감정을 분석한다. 이별 가사에 나타나는 단어 간 유사도를 Word2Vec 학습을 통해 벡터화하여 감정 사전을 구축 한 후 LSTM을 활용하여 가사를 학습시켜 유사한 감정으로 가사를 분류해주는 Word2Vec과 LSTM을 활용한 이별 가사 감정 분류 방법을 제안한다.