인터넷과 스마트폰의 발달로 디지털 음원은 쉽게 접근이 가능해졌고 이에 따라 음악 검색 및 추천에 대한 관심이 높아지고 있다. 음악 추천 방법으로는 장르나 감정을 분류하기 위해 음정, 템포, 박자 등의 멜로디를 사용한 연구가 진행되고 있다. 하지만 음악에서 가사는 인간의 감정을 표현하는 수단 중의 하나로 역할 비중이 점점 높아지고 있기 때문에 가사를 기반으로 한 감정 분류 연구가 필요하다. 이에 본 논문에서는 가사를 기반으로 이별 감정을 세분화하기 위해 이별 가사의 감정을 분석한다. 이별 가사에 나타나는 단어 간 유사도를 Word2Vec 학습을 통해 벡터화하여 감정 사전을 구축 한 후 LSTM을 활용하여 가사를 학습시켜 유사한 감정으로 가사를 분류해주는 Word2Vec과 LSTM을 활용한 이별 가사 감정 분류 방법을 제안한다.
음악 감정 분류에 관한 기존의 연구들은 템포, 박자, 음정, 음표, 리듬 등과 같은 음악의 멜로디와 관련된 자질을 이용하여 음악 감정을 분류하였다. 그러나 노래(Song)와 같이 가사를 포함한 음악은 같은 스타일의 멜로디라도 가사의 내용에 따라 음악에 대하여 청자가 느끼는 감정이 크게 다르다. 본 논문에서는 감정 온톨로지를 활용하여 노래 가사를 감정에 따라 분류하는 방법에 대하여 제안한다. 기구축 된 감정 온톨로지를 바탕으로 네 가지 통사적 규칙을 적용하여 노래 가사로부터 감정 자질을 추출한다. 추출된 감정 자질을 이용하여 Naive Bayes, HMM, SVM과 같은 기계학습 기법을 이용하여 8개 감정 그룹에 대해 58.8%의 정확도를 보였다.
노래(Song)와 같이 가사를 포함한 음악은 같은 스타일의 멜로디라도 청자에 따라 느끼는 감정이 다르다. 따라서 전통적인 음악 분류에서 사용하는 템포, 박자, 음정, 음표, 리듬과 같은 자질을 이용하여 감정을 분류할 수 없다. 본 연구에서는 가사로부터 감정 자질을 추출하고, 이를 학습 자질로 이용하여 노래 가사의 감정을 분류한다. 감정 자질의 추출 정확도를 높이고자, 한국어의 언어적 특징을 반영한 규칙을 구축한다. 추출된 감정 자질과 structured SVM을 이용하여 노래 가사의 감정을 분류한 결과, Naive Bayes나 SVM과 같은 전통적인 학습 기법보다 높은 성능(accuracy = 68.9%)을 보였다.
음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.
최근 들어 소리의 세기나 하모니, 템포, 리듬 등의 다양한 음악 신호 특성을 기반으로 한 음악 무드 분류에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 음악 무드 분류의 정확도를 높이기 위하여 음악 신호 특성과 더불어 노래 가사와 소셜 네트워크 상에서의 사용자 평가 등을 함께 고려하는 멀티 모달 음악 무드 분류 기법을 제안한다. 이를 위해, 우선 음악 신호 특성에 대해 퍼지 추론 기반의 음악 무드 추출 기법을 적용하여 다수의 가능한 음악 무드를 추출한다. 다음으로 음악 가사에 대해 TF-IDF 기법을 적용하여 대표 감정 키워드를 추출하고 학습시킨 가사 무드 분류기를 사용하여 가사 음악 무드를 추출한다. 마지막으로 소셜 네트워크 상에서의 사용자 태그 등 사용자 피드백을 통한 음악 무드를 추출한다. 특정 음악에 대해 이러한 다양한 경로를 통한 음악 무드를 교차 분석하여 최종적으로 음악 무드를 결정한다. 음악 분류를 기반한 자동 음악 추천을 수행하는 사용자 만족도 평가 실험을 통해서 제안하는 기법의 효율성을 검증한다.
본 연구에서는 한국의 대중가요의 가사 정보를 형태소 단위로 분석하고 이 정보를 기반으로 노래의 감정을 분류하여 추천하는 시스템을 제안한다. 이 시스템을 구축하기 위해서 수집된 노래의 가사는 형태소를 분석하여 각 형태소를 자질로 결정하고, 사용되는 분류기는 ME 모델을 이용해서 학습된다. 이 학습된 분류기는 자질의 수에 따라 그 성능이 분석되고, 분류기를 사용한 추천 시스템은 랜덤하게 생성된 데이터 집합에 대해서 얼마나 정확하게 노래를 추천하는 지를 분석한다.
이 논문은 한글 뉴스 기사의 댓글에 대한 감정 분류 방법을 제안한다. 제안된 방법은 기계학습을 이용하는데 본 논문에서는 자질의 가중치를 재조정하는 좀 색다른 방법을 제안한다. 일반적으로 댓글은 독자들이 특정 기사에 대해서 어떠한 감정을 가지고 있는지를 파악하는 중요한 단서가 된다. 그런데 독자들의 감정은 가사에 어떤 분야에 속하느냐에 영향을 받는다. 예를 들면 정치 기사는 부정적인 댓글은 많이 포함하고 있으며 인물 기사는 긍정적인 기사를 많이 포함한다. 이 논문은 이와 같은 댓글의 속성을 이용해서 기사의 원문과 기사의 분야 정보를 이용하여 가중치를 조정한다. 제안된 시스템의 성능을 평가하기 위해 신문 기사와 댓글을 수집하여 감정 말뭉치를 구축하였으며 감정자질을 추출하기 위해 감정 사전을 구축하였다. 제안된 시스템의 $F_1$ 척도는 92.2%였으며 원문의 감정 단어와 분야 정보가 댓글의 감정을 분류하는데 중요한 자질임을 알 수 있었다.
기술의 발전과 함께 사용자에게 가까이 자리 잡은 소셜 네트워크 서비스는 이미지, 동영상, 텍스트 등 활용 가능한 데이터의 수를 폭발적으로 증가시켰다. 작성자의 감정을 포함하고 있는 텍스트 데이터는 시장 조사, 주가 예측 등 다양한 분야에서 이용할 수 있으며, 이로 인해 긍부정의 이진 분류가 아닌 다중 감정 분석의 필요성 또한 높아지고 있다. 본 논문에서는 딥러닝 기반 감정 분류에 심리학 이론의 기반 감정 모델을 활용한 결합 모델과 단일 모델을 비교한다. 학습을 위해 AI Hub에서 제공하는 데이터와 노래 가사 데이터를 복합적으로 사용하였으며, 결과에서는 대부분의 경우에 결합 모델이 높은 결과를 보였다.
최근 음악 서비스 분야에는 감성추천 서비스가 시행되고 있다. 추천 시스템에 따라 내용 기반 추천 방식과 협업 기반 추천 방식으로 크게 구분할 수 있으며 대부분의 음악 서비스 분야에서는 많은 사용자들로부터 얻은 기호정보에 따라 사용자들의 관심사들을 자동적으로 예측하는 방법인 협업 기반 추천 방식으로 서비스를 운영하고 있다. 이에 따라 협업 기반 추천 방식을 사용하는 대표 음원 사이트 멜론과 벅스에서 음악 추천 서비스의 추천된 음악이 실제 감성과 맞는지 기쁨과 슬픔으로 분류하여 Russell의 감성 모형을 기준으로 가사의 5차 분류를 통해 곡의 감성을 분석하여 카테고리의 추천음악과 가사의 상관관계를 비교 연구하였다. 그 결과, 각 카테고리의 감성추천 음악과 실제 음악의 감성이 일치하는 부분도 있지만, 그 외 다양한 감정들이 도출되었다.
본 연구에서는 대중음악의 음악적 구성요소와 편안한 감성과의 상관관계를 밝히고 창작자의 입장에서 감성으로 접근하기 위한 방법을 모색하기 위하여 엠넷의 편안한 감성 테마에서 선정된 200곡의 가사와 음악적 특징을 분석하였다. 이 때 가사의 분석으로 감정적 단어의 사용 및 전체적 가사의 내용을 알아보고 음악적 분석으로 장르, 템포, 조성, 악기구성 및 화성진행 등에 대하여 분석하였다. 이러한 분석을 통하여 편안한 감성의 음악의 특징 점을 발견하고 정리하여 편안한 감성의 곡을 쓰고자 할 때 보다 쉽고 빠르게 접근할 수 있는 방법을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.