• Title/Summary/Keyword: 단어빈도-역문서빈도

Search Result 14, Processing Time 0.031 seconds

Neural Based Approach to Keyword Extraction from Documents (문서의 키워드 추출에 대한 신경망 접근)

  • 조태호;서정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.317-319
    • /
    • 2000
  • 문서는 자연어로 구성된 비정형화된 데이터이다. 이를 처리하기 위하여 문서를 정형화된 데이터로 표현하여 저장할 필요가 있는데, 이를 문서 대용물(Document Surrogate)라 한다. 문서 대용물은 대표적으로 인덱싱 과정에 의해 추출된 단어 리스트를 나타낸다. 문서 내의 모든 단어가 내용을 반영하지 않는다. 문서의 내용을 반영하는 중요한 단어만을 선택할 필요가 있다. 이러한 단어를 키워드라 하며, 기존에는 단어의 빈도와 역문서 빈도(Inverse Document Frequency)에 근거한 공식에 의해 키워드를 선택하였다. 실제로 문서내 빈도와 역문서 빈도뿐만 아니라 제목에 포함 여부, 단어의 위치 등도 고려하여야 한다. 이러한 인자를 추가할 경우 이를 수식으로 표현하기에는 복잡하다. 이 논문에서는 이를 단어의 특징으로 추출하여 특징벡터를 형성하고 이를 학습하여 키워드를 선택하는 신경망 모델인 역전파의 접근을 제안한다. 역전파를 이용하여 키워드를 판별한 결과 수식에 의한 경우보다 그 성능이 향상되었음을 보여주고 있다.

  • PDF

A Case Study on Text Analysis Using Meal Kit Product Review Data (밀키트 제품 리뷰 데이터를 이용한 텍스트 분석 사례 연구)

  • Choi, Hyeseon;Yeon, Kyupil
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.1-15
    • /
    • 2022
  • In this study, text analysis was performed on the mealkit product review data to identify factors affecting the evaluation of the mealkit product. The data used for the analysis were collected by scraping 334,498 reviews of mealkit products in Naver shopping site. After preprocessing the text data, wordclouds and sentiment analyses based on word frequency and normalized TF-IDF were performed. Logistic regression model was applied to predict the polarity of reviews on mealkit products. From the logistic regression models derived for each product category, the main factors that caused positive and negative emotions were identified. As a result, it was verified that text analysis can be a useful tool that provides a basis for maximizing positive factors for a specific category, menu, and material and removing negative risk factors when developing a mealkit product.

An AutoEncoder Model based on Attention and Inverse Document Frequency for Classification of Creativity in Essay (에세이의 창의성 분류를 위한 어텐션과 역문서 빈도 기반의 자기부호화기 모델)

  • Se-Jin Jeong;Deok-gi Kim;Byung-Won On
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.624-629
    • /
    • 2022
  • 에세이의 창의성을 자동으로 분류하는 기존의 주요 연구는 말뭉치에서 빈번하게 등장하지 않는 단어에 초점을 맞추어 기계학습을 수행한다. 그러나 이러한 연구는 에세이의 주제와 상관없이 단순히 참신한 단어가 많아 창의적으로 분류되는 문제점이 발생한다. 본 논문에서는 어텐션(Attention)과 역문서 빈도(Inverse Document Frequency; IDF)를 이용하여 에세이 내용 전달에 있어 중요하면서 참신한 단어에 높은 가중치를 두는 문맥 벡터를 구하고, 자기부호화기(AutoEncoder) 모델을 사용하여 문맥 벡터들로부터 창의적인 에세이와 창의적이지 않은 에세이의 특징 벡터를 추출한다. 그리고 시험 단계에서 새로운 에세이의 특징 벡터와 비교하여 그 에세이가 창의적인지 아닌지 분류하는 딥러닝 모델을 제안한다. 실험 결과에 따르면 제안 방안은 기존 방안에 비해 높은 정확도를 보인다. 구체적으로 제안 방안의 평균 정확도는 92%였고 기존의 주요 방안보다 9%의 정확도 향상을 보였다.

  • PDF

Analysis of the National Police Agency business trends using text mining (텍스트 마이닝 기법을 이용한 경찰청 업무 트렌드 분석)

  • Sun, Hyunseok;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.301-317
    • /
    • 2019
  • There has been significant research conducted on how to discover various insights through text data using statistical techniques. In this study we analyzed text data produced by the Korean National Police Agency to identify trends in the work by year and compare work characteristics among local authorities by identifying distinctive keywords in documents produced by each local authority. A preprocessing according to the characteristics of each data was conducted and the frequency of words for each document was calculated in order to draw a meaningful conclusion. The simple term frequency shown in the document is difficult to describe the characteristics of the keywords; therefore, the frequency for each term was newly calculated using the term frequency-inverse document frequency weights. The L2 norm normalization technique was used to compare the frequency of words. The analysis can be used as basic data that can be newly for future police work improvement policies and as a method to improve the efficiency of the police service that also help identify a demand for improvements in indoor work.

A Study on Social Issues for Hydrogen Industry Using News Big Data (뉴스 빅데이터를 활용한 수소 이슈 탐색)

  • CHOI, ILYOUNG;KIM, HYEA-KYEONG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • With the advent of the post-2020 climate regime, the hydrogen industry is growing rapidly around the world. In order to build the hydrogen economy, it is important to identify social issues related to hydrogen and prepare countermeasures for them. Accordingly, this study conducted a semantic network analysis on hydrogen news from NAVER. As a result of the analysis, the number of hydrogen news in 2020 increased by 4.5 times compared to 2016, and as of 2018, the hydrogen issue has shifted from an environmental aspect to an economic aspect. In addition, although the initial government-led hydrogen industry is expanding to the mobility field such as privately-led fuel cell electric vehicles and hydrogen fuel, terms showing concerns about the safety such as explosions are constantly being exposed. Thus, it is necessary not only to expand the hydrogen ecosystem through the participation of private companies, but also to promote hydrogen safety.

Performance Comparison of Keyword Extraction Methods for Web Document Cluster using Suffix Tree Clustering (Suffix Tree를 이용한 웹 문서 클러스터의 제목 생성 방법 성능 비교)

  • 염기종;권영식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.328-335
    • /
    • 2002
  • 최근 들어 인터넷 기술의 발달로 웹 상에 많은 자료들이 산재해 있습니다. 사용자가 원하는 정보를 검색하기 위해서 키워드 검색을 이용하고 있는데 이러한 키워드 검색은 사용자들이 입력한 단편적인 정보에 바탕하여 검색하고 검색된 결과들을 자체적인 기준으로 순위를 매겨 나열식으로 제시하고 있다. 이러한 경우 사용자들의 생각과는 다르게 결과가 제시될 수 있다. 따라서 사용자들의 검색 시간을 줄이고 편리하게 검색하기 위한 환경의 필요성이 높아지고 있다. 본 논문에서는 Suffix Tree 알고리즘을 사용하여 관련있는 문서들을 분류하고 각각의 분류된 클러스터에 제목을 생성하기 위하여 문서 빈도수, 단어 빈도수와 역문서 빈도수, 카이 검정, 공통 정보, 엔트로피 방법을 비교 평가하여 제목을 생성하는데 어떠한 방법이 가장 효과적인지 알아보기 위해 비교 평가해본 결과 문서빈도수가 TF-IDF보다 약 10%정도 성능이 좋은 결과를 보여주었다.

  • PDF

Analysis of Traffic Improvement Measures in Transportation Impact Assessment Using Text Mining : Focusing on City Development Projects in Gyeonggi Province (텍스트마이닝을 활용한 교통영향평가 교통개선대책 분석 : 경기도 도시개발사업을 대상으로)

  • Eun Hye Yang;Hee Chan Kang;Woo-Young Ahn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.182-194
    • /
    • 2023
  • Traffic impact assessment plays a crucial role in resolving traffic issues that may arise during the implementation of urban and transportation projects. However, reported results diverge, presumably because the items reviewed differ. In this study, we analyze traffic improvement measures approved for traffic impact assessment, identify key items, and present items that should be included in assessments. Specifically, TF-IDF and N-gram analysis and text mining were performed with focus on urban development projects approved in Gyeonggi Province. The results obtained show that keywords associated with newly established transportation infrastructure, such as roads and intersections, were essential assessment items, followed by the locations of entrances and exits and pedestrian connectivity. We recommend that considerations of the items presented in this study be incorporated into future traffic impact assessment guidelines and standards to improve the consistency and objectivity of the assessment process.

A Study on the Dense Vector Representation of Query-Passage for Open Domain Question Answering (오픈 도메인 질의응답을 위한 질문-구절의 밀집 벡터 표현 연구)

  • Minji Jung;Saebyeok Lee;Youngjune Kim;Cheolhun Heo;Chunghee Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.115-121
    • /
    • 2022
  • 질문에 답하기 위해 관련 구절을 검색하는 기술은 오픈 도메인 질의응답의 검색 단계를 위해 필요하다. 전통적인 방법은 정보 검색 기법인 빈도-역문서 빈도(TF-IDF) 기반으로 희소한 벡터 표현을 활용하여 구절을 검색한다. 하지만 희소 벡터 표현은 벡터 길이가 길 뿐만 아니라, 질문에 나오지 않는 단어나 토큰을 검색하지 못한다는 취약점을 가진다. 밀집 벡터 표현 연구는 이러한 취약점을 개선하고 있으며 대부분의 연구가 영어 데이터셋을 학습한 것이다. 따라서, 본 연구는 한국어 데이터셋을 학습한 밀집 벡터 표현을 연구하고 여러 가지 부정 샘플(negative sample) 추출 방법을 도입하여 전이 학습한 모델 성능을 비교 분석한다. 또한, 대화 응답 선택 태스크에서 밀집 검색에 활용한 순위 재지정 상호작용 레이어를 추가한 실험을 진행하고 비교 분석한다. 밀집 벡터 표현 모델을 학습하는 것이 도전적인 과제인만큼 향후에도 다양한 시도가 필요할 것으로 보인다.

  • PDF

A Comparative Study on Requirements Analysis Techniques using Natural Language Processing and Machine Learning

  • Cho, Byung-Sun;Lee, Seok-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.27-37
    • /
    • 2020
  • In this paper, we propose the methodology based on data-driven approach using Natural Language Processing and Machine Learning for classifying requirements into functional requirements and non-functional requirements. Through the analysis of the results of the requirements classification, we have learned that the trained models derived from requirements classification with data-preprocessing and classification algorithm based on the characteristics and information of existing requirements that used term weights based on TF and IDF outperformed the results that used stemming and stop words to classify the requirements into functional and non-functional requirements. This observation also shows that the term weight calculated without removal of the stemming and stop words influenced the results positively. Furthermore, we investigate an optimized method for the study of classifying software requirements into functional and non-functional requirements.

Clustering Meta Information of K-Pop Girl Groups Using Term Frequency-inverse Document Frequency Vectorization (단어-역문서 빈도 벡터화를 통한 한국 걸그룹의 음반 메타 정보 군집화)

  • JoonSeo Hyeon;JaeHyuk Cho
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.12-23
    • /
    • 2023
  • In the 2020s, the K-Pop market has been dominated by girl groups over boy groups and the fourth generation over the third generation. This paper presents methods and results on lyric clustering to investigate whether the generation of girl groups has started to change. We collected meta-information data for 1469 songs of 47 groups released from 2013 to 2022 and classified them into lyric information and non-lyric meta-information and quantified them respectively. The lyrics information was preprocessed by applying word-translation frequency vectorization based on previous studies and then selecting only the top vector values. Non-lyric meta-information was preprocessed and applied with One-Hot Encoding to reduce the bias of using only lyric information and show better clustering results. The clustering performance on the preprocessed data is 129%, 45% higher for Spherical K-Means' Silhouette Score and Calinski-Harabasz Score, respectively, compared to Hierarchical Clustering. This paper is expected to contribute to the study of Korean popular song development and girl group lyrics analysis and clustering.

  • PDF