본 연구는 고려말에 저자미상의 실용적인 목적으로 만들어진 외국어 교재 "노걸대"에 대하여 어떻게 고려말부터 조선 500년 동안 지속적으로 외국어 교재로 사용될 수 있었는지 외국어 교재로서 그 지속성의 가치는 어디에 있는지를 알아보고자 하는데 있다. 이를 위해서 "노걸대"에 있는 대화문 구성된 의사소통 상황별로 정광의 "노걸대" 역주본에 나와 있는 106편의 대화를 만남(12편), 숙박(17편), 대도행(21편), 대도 생활(34편), 귀국(11편)으로 구분하여 평균문장길이, 어휘길이, 타입-토큰 비율, 본동사 앞 단어 수, 명사구 평균 수식어수 항목 측정치를 활용하여 외국어 교재로서의 계열성을 파악하고자 한다. "노걸대"는 제시된각 의사소통기능에서 일부 명사구 내의 계열성이 무시된 경우를 제외하면 전체적으로 복잡도의 계열성을 확인할 수 있었다. 문장 길이, 문장의 복잡도 계열성은 전체적으로 확인되었다. 어휘의 다양성은 계열성이 제대로 구성되었다고 볼 수는 없으나 어휘의 반복율이 높은 것은 기본적인 어휘의 사용이 많이 이루어졌다는 것을 의미한다.
생의학분야에서 문헌에 표기된 개체를 인식하기 위해 길이우선매칭기법을 빈번히 사용한다. 길이우선매칭기법은 사전을 이용한 개체인식기법으로 좋은 사전만 구축되어 있다면 빠르고 정확하게 개체를 찾아낼 수 있다는 장점을 가진다. 그러나 개체가 나열되고 중복된 단어가 생략될 경우에는 길이우선매칭기법을 이용할 경우 성능이 현저히 떨어지게 된다. 우리는 이러한 인식성능문제를 해결하기 위해 부분매칭기법을 제안한다. 제안된 부분매칭기법은 생략이 발생될 수 있다는 것을 가정하여 다수의 후보개체를 만들어 내고 그 후에 최적화 알고리즘을 통해 다수의 개체후보 중에서 가장 타당해 보이는 개체를 선택한다. 우리는 생의학분야의 개체 중에서 나열되는 경우가 빈번한 HLA 유전자, HLA 항원, HLA 대립유전자 개체들을 대상으로 길이우선매칭기법과 제안된 부분매칭기법의 개체인식성능을 분석하였다. 3종의 HLA 개체들을 인식하기 위해서 먼저 확장사전과 태그기반사전을 구축하였으며, 그 후 구축된 사전을 이용해 길이우선매칭과 부분매칭을 수행하였다. 실험결과에 따르면 길이우선매칭기법은 HLA 항원 개체에서 좋은 성능을 보였으며 부분매칭기법은 생략된 표현이 빈번한 HLA 유전자 개체, HLA 대립유전자 개체에서 좋은 성능을 보였다. 부분매칭기법은 HLA 대립유전자 개체를 대상으로 95.59%의 높은 F-score를 얻었다.
Sequence-to-sequence 모델은 입력열을 길이가 다른 출력열로 변환하는 모델로, 단일 신경망 구조만을 사용하는 End-to-end 방식의 모델이다. 본 논문에서는 Sequence-to-sequence 모델을 한국어 구구조 구문 분석에 적용한다. 이를 위해 구구조 구문 트리를 괄호와 구문 태그 및 어절로 이루어진 출력열의 형태로 만들고 어절들을 단일 기호 'XX'로 치환하여 출력 단어 사전의 수를 줄였다. 그리고 최근 기계번역의 성능을 높이기 위해 연구된 Attention mechanism과 Input-feeding을 적용하였다. 실험 결과, 세종말뭉치의 구구조 구문 분석 데이터에 대해 기존의 연구보다 높은 F1 89.03%의 성능을 보였다.
cQA(Community-based Question Answering) 시스템은 사용자들이 질문을 남기고 답변을 작성하는 시스템이다. cQA는 사용자의 편의를 위해 기존의 축적된 질문을 검색하거나 카테고리로 분류하는 기능을 제공한다. 질문의 길이가 길 경우 검색이나 카테고리 분류의 정확도가 떨어지는 한계가 있는데, 이를 극복하기 위해 cQA 질문을 요약하는 모델을 구축할 필요가 있다. 하지만 이러한 모델을 구축하려면 대량의 요약 데이터를 확보해야 하는 어려움이 존재한다. 본 논문에서는 이러한 어려움을 극복하기 위해 cQA의 질문 제목, 본문으로 데이터를 확보하고 필터링을 통해 요약 데이터 셋을 만들었다. 또한 본문의 대표 단어를 이용하여 추상 요약을 하기 위해 딥러닝 기반의 Pointer-generator model을 사용하였다. 실험 결과, 기존의 추출 요약 방식보다 딥러닝 기반의 추상 요약 방식의 성능이 더 좋았으며 Pointer-generator model이 보다 좋은 성능을 보였다.
대화 발화 예측(Next Utterance Classification)은 Multi-turn 대화에서 마지막에 올 발화를 정답 후보들 중에서 예측을 하는 연구이다. 기존에 제안된 LSTM 기반의 Dual Encoder를 이용한 모델에서는 대화와 정답 발화에 대한 관계를 고려하지 않는 문제와 대화의 길이가 너무 길어 중간 정보의 손실되는 문제가 존재한다. 본 연구에서는 이러한 두 문제를 해결하기 위하여 ESIM구조를 통한 단어 단위의 attention, 대화의 turn별 문장 단위의 attention을 제안한다. 실험 결과 총 5000개의 검증 대화 데이터에 대하여 1 in 100 Recall@1의 성능이 37.64%로 기존 모델 대비 약 2배 높은 성능 향상을 나타내었다.
본 논문에서는 유성/무성/묵음 분류기와 주파수 스펙트럼 비교를 통하여 음소 경계 검출기를 구현하였다. 음소경계 검출은 음성 인식, 합성 및 분석 둥의 분야에서 매우 중요하다 유성/무성/묵음 분류기를 이용하여 유성음으로 판별되는 구간은 스펙트럼 비교를 통하여 음소 단위로 세분하였고 무성음으로 판별되는 구간은 한국어의 음성 특성을 고려하여 하나의 음소 단위로 간주하였다. 유성음 구간에 대한 스펙트럼 비교는 수정된 Itakura-Saito distance measure 와 Euclidean MFCC(Mel Frequency Cepstrum Coeffcients) distance measure를 사용하였고 비교 프레임은한 프레임을 건너 윈 경우가 가장 결과가 좋았다. 최종적으로 평균 음소 길이 정보를 이용하여 음소의 경계로 검출된 구간을 더 세분하거나 통합하였다. 유성/무성/묵음 분류기의 경우는 사무실에서 녹음한 고립단어에 대하여 $94.247\%$의 정확도를 보였고 음소 경계 검출의 경우는 $72.8\%$의 정확도를 보였다.
문서 범주화에 이용되는 학습알고리즘 중에서 이원 패턴인식 문제를 해결하기 위해 제안된 SVM은 다른 분류기 보다 우수한 성능을 보이고 있다. 본 연구에서는 Reuters-21578 (ModApte 분할판)을 대상으로 SVM 분류기를 이용하여 단어빈도, 역문헌빈도, 문헌길이 정규화 공식을 자질에 대한 가중치로 적용하여 성능을 평가하고, 선형 SVM과 비선형 SVM의 분류 성능을 비교하였다. 또한 이원 분류기를 승자독식 방법과 쌍단위 분류방법에 의해 다원 분류기로 확정하여 실험한 후 이원 분류기와의 성능을 비교 분석하였다.
1953년 4월 어느날, 권위있는 영국의 종합과학지 "네이처" 편집부에는 논문 한편이 도착했다. "우리는 디옥시리보핵산(DNA)의 염기의 구조를 제안하려고 한다. 이 구조는 생물학적으로 볼 때 매우 흥미를 자아내는 참신한 성질을 갖추고 있다"는 머리말로 시작되는 9백단어 길이의 이 논문은 생물학의 세계를 바꾸는 중대한 계기를 제공했다.그래서 논문의 공동저자인 제임스 와트슨과 프란시스 크릭은 모리스 윌킨스와 함께 1962년 노벨 의학ㆍ생리학 상을 받았다. 그러나 이 연구에서 매우 중요한 공헌을 한 젊은 여성과학자가 있었다는 사실을 아는 사람은 많지 않다. 핵산의 분자구조를 해명하여 하루 아침에 세계 과학계의 정상에 오른 와트슨 등 세사람의 수상자들과는 대조적으로 그녀는 그늘에서 살다가 37세라는 나이에 암으로 세상을 떴다.
Sequence-to-sequence 모델은 입력열을 길이가 다른 출력열로 변환하는 모델로, 단일 신경망 구조만을 사용하는 End-to-end 방식의 모델이다. 본 논문에서는 Sequence-to-sequence 모델을 한국어 구구조 구문 분석에 적용한다. 이를 위해 구구조 구문 트리를 괄호와 구문 태그 및 어절로 이루어진 출력열의 형태로 만들고 어절들을 단일 기호 'XX'로 치환하여 출력 단어 사전의 수를 줄였다. 그리고 최근 기계번역의 성능을 높이기 위해 연구된 Attention mechanism과 Input-feeding을 적용하였다. 실험 결과, 세종말뭉치의 구구조 구문 분석 데이터에 대해 기존의 연구보다 높은 F1 89.03%의 성능을 보였다.
본 논문은 한국인 피험자를 대상으로 이루어진 어절 재인 실험 시 관찰된 언어 현상인 길이 효과, 빈도 효과, 그리고 이웃 효과를 설명할 수 있는 한국어 어절 재인 시뮬레이션 모델을 제안한다. 제안한 모델은 코퍼스에서 나타난 어절의 빈도를 이용하여 정렬한 트라이(trie) 구조를 기반으로 하고 있다. 본 모델은 피험자들의 어절 재인 현상을 모두 설명할 수 있으며 피험자들을 대상으로 한 실험에서 사용한 동일 자료를 이용하여 시뮬레이션한 결과 유의미한 상관 관계를 보였다. 현재 시뮬레이션 중 발견된 언어 현상이 한국인 피험자에서도 나타나는지를 규명하기 위한 실험과 영어 단어 재인시의 언어 현상에 대해서도 적용할 수 있는 확장 방안에 대하여 연구를 수행하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.