• Title/Summary/Keyword: 단어군집화

Search Result 81, Processing Time 0.025 seconds

Moving Data Pictures (움직이는 데이터 그림)

  • Huh, Myung-Hoe
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.999-1007
    • /
    • 2013
  • This research shows several types of moving pictures from the data: 1) the word cloud of Korean texts, 2) the heat map of n ${\times}$ p matrices, 3) the moving image of p ${\times}$ p scatterplot matrix, 4) the local projective display of k clusters (Huh and Lee, 2012). Moving pictures may reveal the hidden information and beauty of the datasets and ignite the curiosity of information consumers. Video files are attached.

Modified multi-sense skip-gram using weighted context and x-means (가중 문맥벡터와 X-means 방법을 이용한 변형 다의어스킵그램)

  • Jeong, Hyunwoo;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In recent years, word embedding has been a popular field of natural language processing research and a skip-gram has become one successful word embedding method. It assigns a word embedding vector to each word using contexts, which provides an effective way to analyze text data. However, due to the limitation of vector space model, primary word embedding methods assume that every word only have a single meaning. As one faces multi-sense words, that is, words with more than one meaning, in reality, Neelakantan (2014) proposed a multi-sense skip-gram (MSSG) to find embedding vectors corresponding to the each senses of a multi-sense word using a clustering method. In this paper, we propose a modified method of the MSSG to improve statistical accuracy. Moreover, we propose a data-adaptive choice of the number of clusters, that is, the number of meanings for a multi-sense word. Some numerical evidence is given by conducting real data-based simulations.

Clustering Meta Information of K-Pop Girl Groups Using Term Frequency-inverse Document Frequency Vectorization (단어-역문서 빈도 벡터화를 통한 한국 걸그룹의 음반 메타 정보 군집화)

  • JoonSeo Hyeon;JaeHyuk Cho
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.12-23
    • /
    • 2023
  • In the 2020s, the K-Pop market has been dominated by girl groups over boy groups and the fourth generation over the third generation. This paper presents methods and results on lyric clustering to investigate whether the generation of girl groups has started to change. We collected meta-information data for 1469 songs of 47 groups released from 2013 to 2022 and classified them into lyric information and non-lyric meta-information and quantified them respectively. The lyrics information was preprocessed by applying word-translation frequency vectorization based on previous studies and then selecting only the top vector values. Non-lyric meta-information was preprocessed and applied with One-Hot Encoding to reduce the bias of using only lyric information and show better clustering results. The clustering performance on the preprocessed data is 129%, 45% higher for Spherical K-Means' Silhouette Score and Calinski-Harabasz Score, respectively, compared to Hierarchical Clustering. This paper is expected to contribute to the study of Korean popular song development and girl group lyrics analysis and clustering.

  • PDF

Analysis of Vocabulary Relations by Dimensional Reduction for Word Vectors Visualization (차원감소 단어벡터 시각화를 통한 어휘별 관계 분석)

  • Ko, Kwang-Ho;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.13-16
    • /
    • 2022
  • LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.

  • PDF

Binary Visual Word Generation Techniques for A Fast Image Search (고속 이미지 검색을 위한 2진 시각 단어 생성 기법)

  • Lee, Suwon
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1313-1318
    • /
    • 2017
  • Aggregating local features in a single vector is a fundamental problem in an image search. In this process, the image search process can be speeded up if binary features which are extracted almost two order of magnitude faster than gradient-based features are utilized. However, in order to utilize the binary features in an image search, it is necessary to study the techniques for clustering binary features to generate binary visual words. This investigation is necessary because traditional clustering techniques for gradient-based features are not compatible with binary features. To this end, this paper studies the techniques for clustering binary features for the purpose of generating binary visual words. Through experiments, we analyze the trade-off between the accuracy and computational efficiency of an image search using binary features, and we then compare the proposed techniques. This research is expected to be applied to mobile applications, real-time applications, and web scale applications that require a fast image search.

Design of environmental technology search system using synonym dictionary (유의어 사전 기반 환경기술 검색 시스템 설계)

  • XIANGHUA, PIAO;HELIN, YIN;Gu, Yeong Hyeon;Yoo, Seong Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.582-586
    • /
    • 2020
  • 국가기후기술정보시스템은 국내 환경기술과 국외의 수요기술 정보를 제공하는 검색 시스템이다. 그러나 기존의 시스템은 유사한 뜻을 가진 단일 단어와 복수 단어들을 모두 식별하지 못하기에 유의어를 입력했을 경우 검색 결과가 다르다. 이런 문제점을 해결하기 위해 본 연구에서는 유의어 사전을 기반으로한 환경기술 검색 시스템을 제안한다. 이 시스템은 Word2vec 모델과 HDBSCAN(Hierarchical Density-Based Spatial Clustering of Application with Noise) 알고리즘을 이용해 유의어 사전을 구축한다. Word2vec 모델을 이용해 한국어와 영어 위키백과 코퍼스에 대해 형태소 분석을 진행한 후 단일 단어와 복수 단어를 포함한 단어를 추출하고 벡터화를 진행한다. 그 다음 HDBSCAN 알고리즘을 이용해 벡터화된 단어를 군집화 해주고 유의어를 추출한다. 기존의 Word2vec 모델이 모든 단어 간의 거리를 계산하고 유의어를 추출하는 과정과 대비하면 시간이 단축되는 역할을 한다. 추출한 유의어를 통합해 유의어 사전을 구축한다. 국가기후기술정보시스템에서 제공하는 국내외 기술정보, 기술정보 키워드와 구축한 유의어 사전을 Multi-filter를 제공하는 Elasticsearch에 적용해 최종적으로 유의어를 식별할 수 있는 환경기술 검색 시스템을 제안한다.

  • PDF

Towards Next Generation Multimedia Information Retrieval by Analyzing User-centered Image Access and Use (이용자 중심의 이미지 접근과 이용 분석을 통한 차세대 멀티미디어 검색 패러다임 요소에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.121-138
    • /
    • 2017
  • As information users seek multimedia with a wide variety of information needs, information environments for multimedia have been developed drastically. More specifically, as seeking multimedia with emotional access points has been popular, the needs for indexing in terms of abstract concepts including emotions have grown. This study aims to analyze the index terms extracted from Getty Image Bank. Five basic emotion terms, which are sadness, love, horror, happiness, anger, were used when collected the indexing terms. A total 22,675 index terms were used for this study. The data are three sets; entire emotion, positive emotion, and negative emotion. For these three data sets, co-word occurrence matrices were created and visualized in weighted network with PNNC clusters. The entire emotion network demonstrates three clusters and 20 sub-clusters. On the other hand, positive emotion network and negative emotion network show 10 clusters, respectively. The results point out three elements for next generation of multimedia retrieval: (1) the analysis on index terms for emotions shown in people on image, (2) the relationship between connotative term and denotative term and possibility for inferring connotative terms from denotative terms using the relationship, and (3) the significance of thesaurus on connotative term in order to expand related terms or synonyms for better access points.

Hierarchical and Incremental Clustering for Semi Real-time Issue Analysis on News Articles (준 실시간 뉴스 이슈 분석을 위한 계층적·점증적 군집화)

  • Kim, Hoyong;Lee, SeungWoo;Jang, Hong-Jun;Seo, DongMin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.556-578
    • /
    • 2020
  • There are many different researches about how to analyze issues based on real-time news streams. But, there are few researches which analyze issues hierarchically from news articles and even a previous research of hierarchical issue analysis make clustering speed slower as the increment of news articles. In this paper, we propose a hierarchical and incremental clustering for semi real-time issue analysis on news articles. We trained siamese neural network based weighted cosine similarity model, applied this model to k-means algorithm which is used to make word clusters and converted news articles to document vectors by using these word clusters. Finally, we initialized an issue cluster tree from document vectors, updated this tree whenever news articles happen, and analyzed issues in semi real-time. Through the experiment and evaluation, we showed that up to about 0.26 performance has been improved in terms of NMI. Also, in terms of speed of incremental clustering, we also showed about 10 times faster than before.

On Characteristics of Word Embeddings by the Word2vec Model (Word2vec 모델의 단어 임베딩 특성 연구)

  • Kang, Hyungsuc;Yang, Janghoon
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.263-266
    • /
    • 2019
  • 단어 임베딩 모델 중 현재 널리 사용되는 word2vec 모델은 언어의 의미론적 유사성을 잘 반영한다고 알려져 있다. 본 논문은 word2vec 모델로 학습된 단어 벡터가 실제로 의미론적 유사성을 얼마나 잘 반영하는지 확인하는 것을 목표로 한다. 즉, 유사한 범주의 단어들이 벡터 공간상에 가까이 임베딩되는지 그리고 서로 구별되는 범주의 단어들이 뚜렷이 구분되어 임베딩되는지를 확인하는 것이다. 간단한 군집화 알고리즘을 통한 검증의 결과, 상식적인 언어 지식과 달리 특정 범주의 단어들은 임베딩된 벡터 공간에서 뚜렷이 구분되지 않음을 확인했다. 결론적으로, 단어 벡터들의 유사도가 항상 해당 단어들의 의미론적 유사도를 의미하지는 않는다. Word2vec 모델의 결과를 응용하는 향후 연구에서는 이런 한계점에 고려가 요청된다.

Answer Recommendation for Knowledge Search using Term Frequency (어휘 빈도를 활용한 지식 검색에서의 답변 추천 시스템)

  • Lee, Ho-Chang;Tak, Hyun-Ki;Lee, Hyun-Ah
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.315-317
    • /
    • 2012
  • 지식iN 등의 지식검색 서비스는 잘못된 답변으로 인한 낮은 신뢰성과 다수의 중복 답변 등의 문제점을 가진다. 질의문 '세상에서 가장 큰 나라'에 대해서 관련된 모든 질문과 답변을 제시하지 않고 질의문과 관련된 다수의 답변을 분석하여 답변 '러시아'를 추천하여 제시할 수 있다면 지식검색의 효용성과 신뢰성이 크게 향상될 수 있다. 본 논문에서는 질문-답변의 유형을 단어, 글, 도표, 목록의 네가지로 분류하고, 그 중 단어 유형에 대한 답변 추천 방법을 제시한다. 질의문에 대해 검색된 질문을 군집화하고, 질문에 대한 답변들에 대해서 TF, IDF, 어휘간 거리 정보를 다양하게 결합하여 어휘의 점수를 계산한다. 각 군집에서 가장 높은 점수를 가지는 어휘를 해당 군집에서 가장 중요한 어휘로 보고 추천 정답으로 제시한다. 단어 유형인 질문 100개에 대한 네이버 지식iN에 대한 시스템 평가에서 추천된 상위 1위에 대해서는 68%의 정답률을, 상위 5위까지에 대해서는 89%의 정답률을 보였다.