• Title/Summary/Keyword: 단세포전기영동

Search Result 25, Processing Time 0.021 seconds

Analysis of gamma-ray-induced DNA damage in human, mouse and rat peripheral blood lymphocytes using single-cell gel electrophoresis (단세포 전기영동법을 이용한 인체, 마우스 및 랫드 림프구의 방사선에 의해 유발된 DNA 손상 측정)

  • Oh, Heon;Jung, Uhee;Park, Hae-Ran;Kim, Sung-Ho;Jo, Sung-Kee
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.41-47
    • /
    • 2004
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to detect DNA damage induced by a number of chemicals and biological factors in vivo and in vitro. The DNA damage was analysed by tail moment (TM) and tail length (TL), which were markers of DNA strand breaks in SCGE. Human, mouse and rat peripheral blood lymphocytes (PBLs) were irradiated with different doses of $^{60}Co$ ${\gamma}$-rays, e.g. 1, 2, 4, and 8 Gy at a dose rate of 1 Gy/min. A dose-dependent increase in TM (p<0.01) and TL (p<0.01) was obtained at all the radiation doses (1-8 Gy) in human, mouse and rat PBLs. Mouse PBLs were more sensitive than human PBLs which were in turn more sensitive than rat PBLs when the treated dosages were 1 and 2 Gy. However, human PBLs were more sensitive than mouse PBLs which were in turn more sensitive than rat PBLs when the irradiation dosages were 4 and 8 Gy. Data from all three species could be fitted to a linear-quadratic model. These results indicated that there may be inherent differences in the radio-sensitivity among PBLs of mammalian species.

Influence of Mercury on the Repair of Ionizing Radiation-induced DNA Damage in Coelomocytes of Eisenia fetida (이온화 방사선에 의해 손상된 Eisenia fetida 체강세포의 DNA 수복에 수은이 미치는 영향)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • Mercury known as quicksilver, is the most common cause of heavy metal toxicity. Toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The mercury genotoxicity could be its effect on DNA repair mechanisms, which constitute the defense system designated to protect genome integrity. The objective of this study is to confirm that mercuric chloride inhibits the repair of gamma ray-induced DNA damage. The earthworm of Eisenia fetida was chosen for this study because it is an internationally accepted model species for toxicity testing with a cosmopolitan distribution. Experiments were done to identify the levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida irradiated with 20 Gy gamma rays alone or with gamma rays after 40 mg $kg^{-1}$ $HgCl_2$ treatment by means of the single cell gel electrophoresis assay. The Olive tail moments were measured during 0~96 hours after irradiation. The repair time in the animals treated with the combination of $HgCl_2$ and ionizing radiation was nearly five times longer than that in the animals treated with ionizing radiation alone. Also, E. fetida exposed to mercury showed a statistically lower repair efficiency of gamma ray-induced DNA damage. The results suggest that the mercury could even have deleterious effects on the DNA repair system. Influence of mercury on the DNA repair mechanisms has been confirmed by this study.

Multiple-biometric Attributes of Biomarkers and Bioindicators for Evaluations of Aquatic Environment in an Urban Stream Ecosystem and the Multimetric Eco-Model (도심하천 생태계의 수환경 평가를 위한 생지표 바이오마커 및 바이오인디케이터 메트릭 속성 및 다변수 생태 모형)

  • Kang, Han-Il;Kang, Nami;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.591-607
    • /
    • 2013
  • The objectives of the study were to evaluate the aquatic environment of an urban stream using various ecological parameters of biological biomarkers, physical habitat quality and chemical water quality and to develop a "Multimetric Eco-Model" ($M_m$-E Model) for the ecosystem evaluations. For the applications of the $M_m$-E model, three zones including the control zone ($C_Z$) of headwaters, transition zone ($T_Z$) of mid-stream and the impacted zone ($I_Z$) of downstream were designated and analyzed the seasonal variations of the model values. The biomarkers of DNA, based on the comet assay approach of single-cell gel electrophoresis (SCGE), were analyzed using the blood samples of Zacco platypus as a target species, and the parameters were used tail moment, tail DNA(%) and tail length (${\mu}m$) in the bioassay. The damages of DNA were evident in the impacted zone, but not in the control zone. The condition factor ($C_F$) as key indicators of the population evaluation indicator was analyzed along with the weight-length relation and individual abnormality. The four metrics of Qualitative Habitat Evaluation Index (QHEI) were added for the evaluations of physical habitat. In addition, the parameters of chemical water quality were used as eutrophic indicators of nitrogen (N) and phosphorus (P), chemical oxygen demand (COD) and conductivity. Overall, our results suggested that attributes of biomarkers and bioindicators in the impacted zone ($I_Z$) had sensitive response largely to the chemical stress (eutrophic indicators) and also partially to physical habitat quality, compared to the those in the control zone.

Evaluation of DNA Damage and Repair Kinetics in the Earthworm (Eisenia fetida) Exposed to Radiation and Mercury (방사선과 수은에 의해 유도된 Eisenia fetida 체강세포의 DNA 손상 및 수복 평가)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.68-73
    • /
    • 2011
  • The single cell gel electrophoresis (SCGE) assay is a microelectrophoretic technique for assessments of DNA damage at the level of the individual eukaryotic cell. The SCGE assay, due to its simplicity, sensitivity and need of a few cells, has advantages compared to other genomic damage assays such as sister chromatid exchange, chromosomal aberration and micronucleus test. In this study, investigated were the levels of DNA damage and the repair kinetics in the coelomocytes of Eisenia fetida treated with HgCl2 and ionizing radiation by means of the SCGE assay. For detecting DNA damage and repair in coelomocytes, earthworms (E. fetida) were irradiated with six doses of ${\gamma}$-rays (0, 2.5, 5, 10, 20 and 50 Gy) and in vivo exposed to mercuric chloride at 0, 80 and 160 mg $kg^{-1}$ for 48 hours. Then the Olive tail moments were measured during 0~12 hours after irradiation and 0~72 hours after Hg treatment. The results showed that the more the oxidative stress was induced by mercury and radiation, the longer the repair time was required. Also, the results suggest that the SCGE assay may be used as an important tool for comparison of the sensitivity of different species to oxidative stresses.

Comparative Study on Human Risk by Ionizing Radiation and Pesticide as Biological Information about Environmental Disaster (환경재해에 관한 생물정보로서의 이온화 방사선과 살충제의 인체 위해성 비교 연구)

  • Kim, Jin-Kyu;Hyun, Soung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.385-392
    • /
    • 2001
  • Environmental risk factors such as ionizing radiations, heavy metals, and pesticides can cause environmental disasters when they exist in excess. The increases in use of ionizing radiation and agricultural pesticide are somewhat related to the possibility of the disaster. The risk of radiation and pesticide was evaluated by means of the single cell gel electrophoresis (SCGE) assay on the human blood lymphocytes. The lymphocytes were irradiated with $0{\sim}2.0Gy$ of $^{60}Co$ gamma ray. Another groups of lymphocytes were exposed to various concentrations of parathion. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed a clear dose- or concentration-response relationship. Parathion of a recommended concentration for agricultural use ($1mg {\ell}^{-1}$ ) has a strong cytotoxic effect on lymphocytes, which is equivalent to damage induced by 0.1 Gy of ${\gamma}$-ray. Furthermore, $2mg{\ell}^{-1}$ of parathion can give rise to DNA damage equivalent to that induced by 0.25 Gy at which the radiation-induced damage can start to develop into clinical symptoms. The comparative results of this study can provide an experimental basis and biological information for the prevention of environmental disaster.

  • PDF